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Abstract

It is commonly found that uncertainty helps discipline economic agents in strate-
gic contexts. Using a stochastic variant of the Nash Demand Game, we show that
the presence of uncertainty may have a dramatically opposite effect. Cautious (ef-
ficient) and dangerous (inefficient) equilibria may co-exist regardless of agents’ risk
preferences.

We report experimental evidence on these predictions. We find that a risk-taking
society may emerge from the decentralized actions of risk-averse individuals. Sub-
jects predominantly play symmetric dangerous equilibria, even when all agents are
risk averse. An important driver for this result is the pessimistic beliefs of subjects
regarding others’ claims.
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1 Introduction

It is commonly found that the presence of uncertainty helps discipline economic agents
in strategic contexts where incentives would otherwise induce inefficient behavior. For in-
stance, using different frameworks, Sandler and Sterbenz (1990), Eso and White (2003),
White (2004) or Bramoullé and Treich (2009) show that risk-averse agents tend to adapt
their behavior when facing uncertainty in a way that increases welfare. Hence, and some-
what counterintuitively, uncertainty can be perceived as a "good" thing even when all
agents are risk averse.

By contrast, we show that the presence of uncertainty in a Nash Demand Game frame-
work may have a dramatically opposite effect: strategic interactions may drive agents to
behave as if they were overly optimistic about the uncertain outcome and lead to the exis-
tence of inefficient equilibria –dangerous equilibria. Surprisingly, dangerous equilibria may
exist even when all agents are risk averse, and may coexist with cautious equilibria, where
all agents behave as if the pessimistic outcome were certain. In other words, a risk-taking
society may emerge from the decentralized actions of risk-averse individuals. We then
develop an experimental setting to assess the severity of the coordination problem in the
lab and confirm that agents tend to adopt a collective dangerous behavior despite their
individual risk aversion.

In the first part of the paper, we amend the well-known Nash Demand Game (Nash
1950; Malueg 2009) by supposing that symmetrically informed players are splitting an
uncertain amount of a resource following a discrete probability distribution. This setting
seems to capture a number of stylized situations: in climate change negotiations, for in-
stance, parties normally focus on a finite number of collective targets, such as 550 parts
per million (ppm) of carbon dioxide (CO2)-equivalent - a politically sensible objective that
many think is unlikely to prevent major environmental disruptions, 450 ppm - which may
limit global warming to a manageable level (thought to be 2◦C), or 350 ppm - which some
scientists and vulnerable countries regard as the upper bound on emissions that guarantees
the preservation of the present biosphere 1

In sharp contrast with results in the previous literature, uncertainty here does not
1Other examples abound, for example among public health applications are epidemiological concerns:

some diseases become epidemic past a threshold of infected people, with uncertainty about the threshold.
If the threshold rate of infection is reached, the resulting infectious agents can spread quickly through
a worldwide contiguous, highly mobile, human population with few barriers to transmission. Similarly,
certain viruses become resistant to antibiotics past an (uncertain) level of collective use of a specific drug.
For more information about these issues, and for more examples, we refer the reader to Laurent-Lucchetti
et al (2013).

2



always lead agents to be more careful, even when all agents are risk averse: cautious
equilibria coexist with dangerous equilibria and even with dreadful equilibria, where agents
collectively claim so much of the resource that no unilateral deviation by one agent can stop
its exhaustion.2 We conclude the theory part by showing that any cautious equilibrium is
efficient and Pareto-dominates all dangerous equilibria that can be reached from it while
increasing every agent’s claim.

We then develop an experimental setting to assess the severity of the coordination
problem in the lab. Subjects play a simple stochastic Nash Demand Game where the total
amount to be divided can either be "high" or "low", with known probabilities. We also
elicit the risk preferences of players using the well known procedure developed in Holt
and Laury (2002). Our experimental results confirm the theoretical findings: subjects
coordinate on the symmetric "dangerous" equilibrium, where they collectively claim the
high amount of resource, even if the probability of such a state of the world occurring is
small and even if everyone involved is risk averse. Moreover, we find that when Pareto-
dominating "cautious" equilibria exist, where subjects collectively demand the low amount
of resource – thereby securing positive payoffs – subjects are unable to coordinate on them
and either select the (dominated) dangerous symmetric equilibrium or fail to coordinate
on any equilibrium at all. Surprisingly, this last outcome is more and more likely as the
probability of the "high" state diminishes.

The division of private goods has received much interest in the psychology literature,
investigating the effects of resource uncertainty on cooperative behavior in experimental
settings (Budescu, Rapoport and Suleiman, 1992; Budescu, Suleiman and Rapoport, 1995;
Rapoport et al., 1992; Suleiman, Budescu and Rapoport, 1994). As in our setting, subjects
were free to request as much as they wanted of a resource with the consequence that subjects
received nothing if the total requests by the group exceeded the available resource. Their
main finding is that as uncertainty (defined as the interval between a lower and upper bound
of a uniform probability distribution) increased, subjects overestimated resource size and
requested more. These findings are in line with results of experimental papers on threshold
uncertainty in discrete public good contribution games (McBride, 2010, found that wider
threshold uncertainty may also hinder collective action) and on common resource pool
problems in a dynamic setting: Fischer at al. (2004), for example, showed that an increase
in uncertainty leads to overly optimistic expectations.

2In a context relatively close to ours, Guth et al. (2004) study a Nash demand game with two players
and an uncertain surplus size. They allow each party to choose to "wait" until uncertainty is resolved
before making a claim. Adding the "wait" strategy yields two equilibria in which one of the players takes
almost the whole surplus, provided uncertainty is small. We deal here, however, with a class of problems
in which the type of surplus to be distributed does not allow for waiting until uncertainty resolves.
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In these papers, and in the following literature (see for example Gustafson et al., 1999,
Milinsky et al., 2008 or Tavoni et al. 2011 or Barrett 2012) it is unclear why resource
uncertainty affects cooperation. Rapoport et al. (1992) suggested that the overharvesting
effect might reflect that subjects overestimate the size of the uncertain resource. Gustasfon
et al. (1999) states that "a reason for such overestimation may be that subjects perceive
a direct relationship between the central tendency of a probability distribution and its
variability. Increasing the interval between the lower and upper bound of resource size
would therefore cause subjects to perceive or infer an increase of the expected value of the
resource". Another suggested explanation (Rapoport et al., 1992) is that people may base
their estimates of resource size on a weighted average of the lower and upper bound of
its possible realization. It is furthermore assumed that the more desirable upper bound is
overweighed, resulting in an upward shift of the estimates (the explanation is consistent
with research demonstrating that agents tend to weight more heavily desirable outcomes,
see Zakay, 1983).

Contrasting with the existing literature, we provide an explanation as to why uncer-
tainty may lead to the subjects’ collective optimism: in our setting, dangerous equilibria
may exist even if all agents are risk averse. In fact, a second distinguishing feature of our
experimental setup is the fact that we elicit the risk preferences of the subjects. This allows
us to confirm the existence of the coordination problem and quantify its severity, because
we observe many dangerous equilibria being played by risk-averse subjects even when the
probability of a "high" state is small. To the best of our knowledge, this is the first time
that this coordination problem—resulting from a combination of uncertainty, threshold
effects and risk aversion—is identified.

While our results do not directly explain the findings of the Rapoport papers, which
assume a uniform distribution, it is consistent with their explanation emphasizing the role
of players basing their estimates of resource size on an aggregated assessment of the lower
and upper bounds of the available resource. Pushing this reasoning further we obtain
the discrete bimodal distribution we analyze here, with positive weight on the lower and
upper bounds of the uniform distribution they consider. The apparent overweighting of
the dangerous outcome is not driven by optimism of agents per se, but by a coordination
problem. Our results confirm this assertion by showing that agents tend to have high belief
about the play of other agents, which pushes them toward a dangerous play.

Our formal experimental results are threefold. First, we find that subjects mostly co-
ordinate on the symmetric dangerous equilibrium and rarely coordinate on any cautious
equilibria (Result 1) even though almost all agents risk averse. In fact, because we elicit
the subjects’ beliefs of what their counterparts will play (and reward their accuracy), we
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are able to test whether they play best-response strategies consistent with a cautious or
dangerous outcome: it turns out that, even at the individual level, subjects aim to play
the symmetric dangerous equilibrium. Second, the probability of being in the ’high’ state
plays an important role in achieving coordination: coordination proves more difficult for
lower values of this probability (Result 2). This set of results confirm the main theoretical
message: a risk-taking society may emerge from the decentralized actions of risk-averse
individuals. A surprising result is that despite the "good" properties of the symmetric
cautious equilibria (i.e. it is strong and Pareto dominates the symmetric dangerous equi-
librium), even risk-averse agents fail to coordinate on it. A likely explanation for this
behavior lies in the pessimistic beliefs held by subjects during the experiment: a great
majority of players believe that the other agents will collectively ask for more than the
safe outcome (Result 3). Thus, a player has no incentive to play cautiously, her best re-
sponse is simply to play a dangerous outcome: instead of "collective optimism", we observe
inefficient behaviors because of "individual pessimism".

The rest of the paper unfolds as follows. The upcoming section lays out the mathe-
matical notation and the basic model. Section 3 presents and proves our main theoretical
propositions. Section 4 exposes the experimental setting and Section 5 the main experi-
mental results. Section 6 brings some concluding remarks.

2 The basic model

Consider a finite set N = {1, ..., n} of agents who must simultaneously decide how much
of a resource, measured in positive real numbers, they will claim for themselves. Overall
demand is sustainable up to a limit, but uncertainty lies on the tipping point beyond
which the intensity of use becomes unsustainable, which we model as the available resource
collapsing to 0.3 Let 0 < ωL < ωH be respectively the low and high value that the stock
of resource can take. With probability p ∈ [0, 1], the high value ωH is realized, with
probability (1− p), the low value ωL is realized.

Denote xi ∈ [0, ωH ] agent i’s claim, demand or request (we use these terms inter-
changeably throughout the paper) on the resource, x = (xi)iϵN a request vector or profile,
X =

∑
N xi total demand, and X−i =

∑
j ̸=i xj the sum of all agents’ claims except agent

i’s. The utility agent i derives from being delivered her request xi is given by ui(xi), where
the function ui(·) is concave (i.e., agents are risk averse or risk neutral) and nondecreasing.

3One interpretation is that agents are sufficiently long-lived to deem the utility from immediate unsus-
tainable resource consumption negligible compared to the lifetime utility of sustained consumption.
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Reaching this consumption level is of course conditional on total demand not exceeding
the threshold; otherwise all agents get zero utility (ui(0) = 0 for all i).

Agent i’s expected payoff in this Stochastic Nash Demand Game is now given by

vi(xi, X−i) = ui(xi)I(X ≤ ωL) + pui(xi)I(ωL < X ≤ ωH), (1)

where I(·) indicates whether the condition within parentheses holds (= 1) or not (= 0).
Notice that the familiar Nash Demand Game is just a special case of a Stochastic Nash
Demand Game in which p = 1.

A profile of claims x ∈ [0, ωH ]
n is a (pure strategy) Nash equilibrium if for each i ∈ N ,

vi(xi, X−i) ≥ vi(x
′
i, X−i) for all x′

i ∈ [0, ωH ] (2)

This completes the description of the model, so we can proceed to the derivation of our
main results.

3 Main results

We first present the Nash equilibria of this simple game.

3.1 Nash equilibria

Using the current notation, one can characterize an agent i’s best response strategy as
follows.

First, consider the case where X−i > ωL:

a) If X−i ≤ ωH , then agent i can do no better than request xi = ωH −X−i because the
remaining agents already collectively demand more than the sustainable threshold
ωL.

b) If X−i > ωH , however, agent i can claim any amount xi ≥ 0, because she will end up
with a payoff of zero anyway.

Next, consider the case where X−i ≤ ωL:

a) If ui(ωL − X−i) ≥ pui(ωH − X−i), agent i does best by claiming xi = ωL − X−i.
Requesting the safe amount ωL−X−i in this case yields more utility than demanding
the higher (but risky) alternative ωH −X−i.

6



b) If ui(ωL −X−i) < pui(ωH −X−i), agent i’s best response is xi = ωH −X−i.

This description of the best-response strategies shows that three sorts of Nash equilibria
are possible: (1) cautious equilibria, in which agents collectively set total demand at the
highest secure level X = ωL; (2) dangerous equilibria, where agents together request the
risky upper ceiling X = ωH and face a probability 1 − p of exhausting the resource; and
dreadful equilibria, wherein everyone’s claim is so high (i.e., X−i > ωH for all i) that no
individual adjustment can avoid their collapse. We define these formally below.

Cautious Equilibrium: An equilibrium profile x ∈ [0, ωH ]
n is a cautious equilibrium

if X ≤ ωL.

Notice that for any cautious equilibrium, expected payoffs are then always positive regard-
less of p because ωL is available with certainty – i.e., vi(xi, X−i) = ui(xi) for all i ∈ N .

Dangerous Equilibrium: An equilibrium profile x ∈ [0, ωH ]
n is a dangerous equilib-

rium if ωL < X ≤ ωH .

Notice that for any dangerous equilibrium, vi(xi, X−i) = pui(xi) for each i ∈ N .

Dreadful Equilibrium: An equilibrium profile x ∈ [0, ωH ]
n is a dreadful equilibrium

if X−i > ωH for all i ∈ N .

Notice that no Nash equilibrium exists in which agents collectively ask for less than
ωL or strictly between ωL and ωH . Moreover, cautious, dangerous and dreadful Nash
equilibria can coexist, despite the fact that all agents are risk averse. This contrasts with
the findings reported so far in the literature (see Bramoullé and Treich 2009, for example).
The simultaneous presence of these equilibria is also unlikely to be accidental, as the
following simple example suggests.

Example 1. Let there be only two agents, with identical utility function ui(xi) =
√
xi for

i = 1, 2. Suppose ωL = 0.8, ωH = 1, and p = 0.8. The strategy profile x = (0.5, 0.5)

is a dangerous equilibrium because vi(0.5, 0.5) = 0.7 · 0.8 = 0.56 > vi(0.3, 0.5) = 0.54 for
i = 1, 2. At the same time, the profile x′ = (0.4, 0.4) is a cautious equilibrium because
vi(0.4, 0.4) = 0.63 > vi(0.6, 0.4) = 0.77 · 0.8 = 0.62 for i = 1, 2; and x′′ = (1.5, 1.5) is also
clearly an equilibrium, a dreadful one which brings each agent’s payoff to 0.4 ⋄

4Although we exclude such risk attitudes for reasons of tractability, note that all three types of equilibria
may coexist with only risk-loving agents. To see this, suppose that i = 1, 2, ui(xi) = x2

i , p = 0.4 and
a = 0.8. One can check that x = (0.5, 0.5) is a dangerous equilibrium, x′ = (0.4, 0.4) is again a cautious
one, and x′′ = (1.5, 1.5) is a dreadful equilibrium.
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In order to grasp the conditions underlying the existence of each type of Nash equilibria,
we introduce an extra piece of notation. Let 0 ≤ X i ≤ ωL refer to the cut-off demand level
such that

ui(ωL −X−i) > pui(ωH −X−i) if X−i < X i

ui(ωL −X−i) < pui(ωH −X−i) if X−i > X i

. (3)

This allows one to make the following preliminary statement.

Lemma 1. For all i, there always exists a unique cut-off value, X̄i.

Proof. Let fi(X−i) ≡ ui(ωL−X−i)−pui(ωH−X−i). Clearly, f ′
i = −u′

i(ωL−X−i)+pu′
i(ωH−

X−i) < 0 since the function ui is concave. When fi(0) is negative or 0, one can set X̄i = 0.

If fi(0) is positive, the fact that fi(a) < 0 and fi(.) is decreasing and continuous entails that
there is a unique X̄i > 0 such that fi(X̄i) = 0, fi(X−i) > 0 if X−i < X̄i, and fi(X−i) < 0

if X−i > X̄i.

The following proposition indicates when there always exists at least one cautious or
one dangerous equilibrium, and when both types of equilibria coexist.

Proposition 1. The game always admits at least one non-dreadful equilibrium. More
precisely,

i) A cautious equilibrium exists if and only if
∑

i∈N X̄i ≥ (n− 1)ωL;
ii) A dangerous equilibrium exists if and only if

∑
i∈N X̄i ≤ (n− 1)ωH ;

iii) At least one cautious and one dangerous equilibria coexist if and only if
(n− 1)ωL ≤

∑
i∈N X̄i ≤ (n− 1)ωH .

Proof. Part (i): By the above description of best-response strategies, a strategy profile x

is a cautious equilibrium if and only if{
X−i ≤ X̄i for all i ∈ N∑

j xj = ωL

(4)

Using the fact that X−i = ωL − xi and adding up all the inequalities in (4), we have that∑
i X̄i ≥ (n− 1)ωL. Conversely, if

∑
i X̄i ≥ (n− 1)ωL, one can always find a vector x that

satisfies (4).
Part (ii): Similarly, a strategy profile x is a dangerous equilibrium if and only if{

X−i ≥ X̄i for all i ∈ N∑
j xj = ωH

(5)
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Using the fact that X−i = ωH − xi and adding up all the inequalities in (5), we have that∑
i X̄i ≤ (n − 1)ωH . Conversely, if

∑
i X̄i ≤ (n − 1)ωH , one can always find a vector x

which satisfies (5).
Part (iii) follows trivially.

An important corollary is that dangerous equilibria always exist when n > ωH

ωH−ωL
, and this

independently of the utility profile and probability p: by definition, X̄i ≤ ωL, which implies∑
i∈N X̄i ≤ nωL. Furthermore, we know from (iii) that a dangerous equilibrium exists if∑
i∈N X̄i ≤ (n− 1)ωH . Hence, a dangerous equilibrium exists if nωL ≤ (n− 1)ωH .

Example 2. Let n = 3, ωL = 9 and ωH = 12. Notice that the condition n > ωH

ωH−ωL

is not satisfied. If p < 1
4
, then there exist no profile of utility function u with, for each

i ∈ N , ui(xi) = (xi)
α, 0 < α ≤ 1, for which a dangerous equilibrium exists. For each

i ∈ N , agent 1’s expected utility from a symmetric demand x = (4, 4, 4) is 4αp < 1 while
one from deviating to the cautious demand (1, 4, 4) is simply 1. It can be checked that no
asymmetric dangerous equilibrium exists. On the other hand, there exists an infinity of
cautious equilibria. For instance. with p < 1

4
, the symmetric demand (3, 3, 3) is a cautious

equilibrium, and so is the asymmetric demand (1, 1, 7). ⋄

Figure 1 illustrates the sets of equilibria in the two-agent case. These sets depend on
the location of the cut-offs X̄i, which in turn depends on the lower bound a, the probability
p, and the agents’ respective utility functions ui(·).
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Figure 1: The two agents case

We now discuss a few comparative statics arguments based on Proposition 1. If agent i
becomes more risk averse (so the coefficient of absolute risk aversion u′′

i (·)/u′
i(·) uniformly

increases, say), the cut-off X̄i increases because a secure amount of resources (ωL −X−i)

now yields relatively more utility than the risky amount (ωH −X−i). From Proposition 1,
one infers that the set of cautious equilibria expands while the set of dangerous equilibria
shrinks as agents become more averse to risk. Also, X̄i is a decreasing function of p.

Finally, consider a change in the level of the lower threshold from ωL to ω′
L > ωL

and denote by X̄ ′
i the cut-off value associated with ω′

L, all else equal. It follows from the
concavity of ui that X̄ ′

i > X̄i. This implies that the set of dangerous equilibria shrinks.
However, the set of cautious equilibria might not expand: by Proposition 1, this will happen
if and only if

∑
N X̄ ′

i −
∑

N X̄i > (n− 1) (ω′
L − ωL).
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3.2 Efficiency

We now assess the efficiency properties of each type of equilibria. It turns out that cautious
equilibria are not only Pareto-efficient, they are also strong. Recall that a Nash equilibrium
x is strong if no alternative strategy profile x′ ∈ Rn

+ exists such that x′
j = xj for all the

outsiders j ∈ N\T and vi(x
′) ≥ vi(x) for all agents i belonging to a coalition T ⊆ N , the

inequality being strict for at least one i. The following proposition determines whether
dreadful and cautious equilibria are strong in this sense.

Proposition 2. Cautious equilibria are strong, but dreadful equilibria are not.

Proof. From a dreadful equilibrium, any group deviation leading to a cautious or a dan-
gerous strategy profile, be it a deviation by the entire set of players, obviously brings a
higher payoff to all agents in the coalition. Hence, dreadful equilibria are not strong.

The proof that cautious equilibria are strong proceeds by contradiction. Let x ∈ Rn
+ be

a cautious equilibrium, and suppose there exists another strategy profile x′ and a coalition
T ⊆ N such that x′

k = xk for all k /∈ T , vi(x′) > vi(x) for some i ∈ T , and vj(x
′) ≥ vj(x)

for all j ∈ T . Because the utility functions uj’s are increasing, it must be the case that∑
j∈T x′

j >
∑

j∈T xj and x′
j ≥ xj for all j ∈ T . Now, consider an agent j ∈ T such that

X ′
−j > X−j. For this agent, demanding x′

j = ωL − X ′
−j or less leads to a lower payoff

than before; her best response must be x′
j = ωH −X ′

−j. We then have that vj(x
′
j, X

′
−j) =

vj(ωH −X ′
−j, X

′
−j) < vj(ωH −X−j, X−j) ≤ vj(x), where the last inequality holds because x

is a Nash equilibrium. Agent j is thus worse off under x′ than under x, which contradicts
the initial assertion.

This proposition entails that all cautious equilibria are Pareto efficient. Furthermore,
any cautious equilibrium Pareto-dominates all dreadful ones. The status of dangerous equi-
libria is not so clear-cut, however. The following result shows that a cautious equilibrium
Pareto-dominates all dangerous equilibria that can be reached from it while increasing
every agent’s claim.

Proposition 3. Let the strategy profile x be a dangerous equilibrium. Any cautious equi-
librium x′ such that, for some subset T ⊆ N ,

x′
i = xi − αi for all i ∈ T , and

x′
i = xi for all i /∈ T

(6)

with αi ≥ 0 for all i ∈ T and
∑

i αi = ωH − ωL, Pareto-dominates x.
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Proof. Suppose a dangerous equilibrium x and a cautious equilibrium x′ verifying condition
(6). For all i ∈ T , we have that

ui(x
′
i) ≥ pui(x

′
i + ωH − ωL)

= pui(xi +
∑
j ̸=i

αj)

> pui(xi).

The first inequality holds because x′ is itself a Nash equilibrium. The second (strict)
inequality follows from the fact that

∑
j ̸=i αj > 0, for

∑
j ̸=i αj = 0 would mean that x is

not a Nash equilibrium (since the cautious equilibrium x′ could then be reached from it
through a unilateral move by agent i).

Our set of theoretical results can be summarized as follow:

• Cautious and Dangerous equilibria can coexist even though all agents are risk averse
(Proposition 1).

• A Cautious equilibrium is Pareto efficient and Pareto-dominates all dangerous equi-
libria that can be reached from it while increasing every agent’s claim (Propositions 2
and 3). An important implication is that the symmetric Cautious equilibrium Pareto
dominates the symmetric dangerous equilibrium (if they co-exist of course).

The latter result qualifies the former: even though both types of equilibria may coexist,
cautious equilibria may be more likely to emerge due to their appealing robustness and
welfare properties. However, as we shall see, our experimental results tend to show that
the second part of the statement does not hold in the lab: cautious equilibria very rarely
emerge, possibly due to a severe coordination problem.

4 Experimental Design

The experiment took place in the fall of 2011 at BeClaw, the experimental lab at the
University of Bern. For this purpose, 138 participants were recruited via ORSEE (Greiner,
2004) from the student pool at the University of Bern. The experiment lasted for up to
60 minutes per session and consisted of four treatments, three sessions for each treatment,
each session involving different participants. Participants earned an average of 40 Swiss
Francs for their participations (roughly $44 US).
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Each session consisted of two parts. The first part was a 10-period version of a Stochas-
tic Nash Demand Game with fixed p. The second part was a risk-preference elicitation
questionnaire where participants filled the Holt and Laury lottery choice tables (Holt and
Laury, 2002). Treatments 1-4 had values of p = 1, 0.7, 0.5 and 0.3, respectively. Instruc-
tions can be found in the appendix.

At the beginning of each period, participants are assigned randomly into groups of
three. Groups are reshuffled each period and identities are unknown throughout to avoid
reputation effects. In each period, groups play the Stochastic Nash Demand Game given
the probability p that prevails in the session. The probability p is common knowledge
among participants.

We used ωL = 6 and ωH = 12 for all treatments, also common knoweldge. For this set
of parameters, dangerous equilibria always exist. Cautious equilibria exist depending on
the utility profile and p. For p ≤ 0.5, cautious equilibria exists for a wide set of risk-averse
utility profiles –e.g., ui(xi) = (xi)

α for α ∈ (0, 1), or constant relative risk aversion utility
functions (CARA) with relative risk aversion coefficients consistent with the ones obtained
from the risk-preferences elicitation portion of the experiment. Notice that for a utility
profile ui(xi) = (xi)

α for α ∈ (0, 1
4
], cautious equilibria exist for p ≤ 0.7. Hence existence

of cautious equilibria can be rationalized by many utility profiles in the p = 0.7 treatment
as well.

Treatment 1 2 3 4
Probability 1 0.7 0.5 0.3

Number of Subjects 33 36 36 33

Table 1: Experimental Design

Before the start of each session, participants are given a detailed set of instructions
explaining the first part of the experiment (the probability p, the payoffs, etc.) summarizing
the Stochastic Nash Demand Game in which they will take part. Control questions assess
the understanding by participants. The experiment does not start until each participant
has answered correctly the control questions. The first part lasts for ten periods. Each
period is decomposed into two parts. First, participants are asked to give an estimation
of the sum of the demands that the other two in their groups will ask for. We interpret
this as the belief that participants form regarding the behavior of their group members.
This belief elicitation is incentivized. If a participant correctly estimates the demand of
the others in his group, he gets one extra experimental dollar. If his estimation deviates
by one, he receives 0.75 extra experimental dollar. If his estimation differs by 2 points,
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Figure 2: Risk preferences

he gets 0.5 extra experimental dollar. If it differs by more, he gets nothing. At the end
of each period, each participant is informed about the total demand in his group as well
as his payoff in this given period. Participants are informed that there will be a second
part to the experiment, they have however no knowledge of what this part will be about or
whether they would get money from it. The second part of the experiment is a standard
risk preferences elicitation as done by Holt and Laury (2002). We refer the reader to that
paper for additional details.

5 Experimental Results

Over all treatments, almost half of the outcomes are Nash equilibria (47%). The rate of
Nash equilibria is 68% when p = 1, 64% when p = 0.7, and drops to 35% when p = 0.5

and 23% when p = 0.3. We first show that, even though agents are mostly risk averse,
almost all of these equilibria are Dangerous (Result 1). We then stress that coordination
failure increases for lower values of p (Result 2). Finally we establish that these dangerous
behaviors are mainly driven by pessimistic beliefs of players (Result 3). This confirms
that risk aversion, by itself, does not always push toward an efficient outcome in a risky

14



environment. We start with an overview of the statistical observations pointing at our
main results before exposing them formally.

5.1 Overview and first impressions

We give here an overview of important parameters and quantities coming out of our exper-
iment. This will help us forming some first intuitions regarding the three central results of
the experiment. We first start with an account of risk preferences before detailing beliefs
and demands of players.

Risk Preferences. Risk indices are constructed following the elicitation of the attitude
toward risk of subjects. In the second part of the experiment, subjects have a list of 10
decisions to make, each decision involving the choice between two lotteries –A and B–
which differ in their expected value. The number of successive choices is indicative of the
attitude towards risks of subjects with the risk neutral switching between lotteries A and
B after the fourth decision. We simply record the decision at which a subject switches
between lottery A and B.5 Let this decision be y for subject i. Define agent i’s risk index
by ρi ≡ yi/10 ∈ [0, 1]. Subject i is risk neutral if ρi = 0.4, risk-lover if ρi < 0.4 and
risk-averse if ρi > 0.4.

Figure 2 shows the distribution of the risk index in each treatment. The average risk
index is roughly at 0.6 in all treatments, indicating moderate risk-aversion on the part of
the subjects.6 We find no statistical difference in the distribution of the risk indices across
treatments –Kruskall-Wallis test, p-value= 0.84. For all treatments, a Wilcoxon-matched-
pairs-signed rank test cannot reject the null hypothesis that the median risk index is 0.6

–p-values 0.8786, 0.4579, 0.7764, and 0.9072 for Treatments 1, 2, 3 and 4 respectively.
In contrast with previous literature—and in line with our theoretical results—we ob-

serve in Figure 3 an apparent lack of relationship between individual demands and risk
preferences. This is supported by non-significant Spearman correlation tests (although one
can notice some mild differences across treatments as the probability p goes down). We will
confirm in the next section that risk aversion does not mitigate the coordination problem
leading to more dangerous outcome.

5Only a few subjects (no more than 3 per session per treatment) displayed multiple switching patterns.
For those subjects, we keep only the first switch as is standard in the litterature.

6The average risk indexes are, respectively, 0.606 in treatment 1, 0.580 in treatment 2, 0.583 in Treat-
ment 3, and 0.590 in treatment 4.
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Figure 3: Relationship between Risk Preferences and Individual Demands

Beliefs. The main observation is that a vast majority of subjects in our sample have
pessimistic beliefs. The average belief across all treatment is higher than 6 in 87% of the
observations. These beliefs are higher than 6 in 96% of the observations when p = 1, 92%
of the observations when p = 0.7, 91% of the observations when p = 0.5 and 63% of the
observations when p = 0.3. It is noteworthy that, even in the latter treatment, the beliefs
are strongly biased toward high claim values. Even more surprising, is that the beliefs of
players are higher than 8 in 91% of the observations when p = 1, 92% of the observations
when p = 0.7, 71% of the observations when p = 0.5 and 41% of the observations when
p = 0.3.

Recall that if a player believes that the other agents will collectively ask for more
than 6, then she has no incentive to play a small amount because a cautious outcome is
unreachable. Her best response is simply to play so as to collectively reach ωH = 12, a
dangerous outcome. Such beliefs induce best responses away from a cautious (and efficient)
equilibrium. These pessimistic beliefs may explain the next stylized fact: subjects have a
clear tendency to avoid cautious play.
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Figure 4: Trend of average groups demand

Demands. We observe that subjects mostly coordinate on the symmetric dangerous
play when playing an equilibrium. If this trend appears when studying group demands, it
becomes even clearer when considering the individual demands.

Figure 5 shows the distribution of group demands, independently of the period in which
they occur. We observe that, on average, agents play collectively close to the symmetric
dangerous equilibrium—i.e., total demands around ωH = 12—in each treatment but the
one with p = 0.3. In the p = 1 treatment, the average group demand across periods is 12.42
with a standard-deviation of 0.36. When p = 0.7, the average group demand across periods
is 12.12 with a standard-deviation of 0.36. When p = 0.5, the average group demand across
periods is 11.5 with a standard-deviation of 0.72. Finally, when p = 0.3, the average group
demand across periods is 9.55 with a standard-deviation of 1.28.

In all treatments, Wilcoxon matched-pair tests run in Period 1 never reject the null
hypothesis that agents median play is 4, with p-values respectively of 0.5517, 0.3742,
0.6339, and 0.2276. Although independence of observations bound us to use this test in
Period 1 only, we nevertheless (cautiously) report next the outcomes of such test run in
later periods. As it turns out, with p = 1 or p = 0.7, the null is never rejected in later
periods. With p = 0.5, the null is rejected in periods 7 to 10. With p = 0.3, the null
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Figure 5: Sum of demands by group

is rejected from Period 3 to 10. However the null hypothesis that agents’ demand is 2
(coordination on being cautious) is always rejected.

The last observation is that, as p goes down, agents play less and less dangerous but do
not coordinate easily on any cautious equilibrium. Table 2 shows the proportion of Nash
equilibrium occurrences across period and treatments, irrespective of whether they are
cautious or dangerous equilibria (disaggregated data can be found in Tables 6 and 7, in the
Appendix). We see that as p goes down a coordination problem emerges: agents coordinate
less and less on any equilibrium. Despite the fact that the dangerous play becomes less
and less attractive as p shrinks, agents are reluctant to play cautiously. Indeed, in the
p = 1 treatment, 75 out of 110 observations are dangerous equilibria. When p = 0.7, 77
out of 120 observations are dangerous equilibria. When p = 0.5, 42 out of 120 observations
are dangerous equilibria. Perhaps strikingly, in the former three treatments, no cautious
equilibrium was ever played. Finally, when p = 0.3, 10 out of 110 observations are dangerous
equilibria and only 16 are cautious equilibria. In contrast, overshooting is roughly at the
same level in the first three treatments –respectively 21, 24 and 22 observations. When
p = 0.3, 16 observations are above a group demand of 12 –out of which ten occur in the
first two periods of play. We now confirm statistically these first impressions by stating
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Nash Equilibrium Rates
Period 0.3 0.5 0.7 1

1 0.272727 0.083333 0.583333 0.636364
2 0.181818 0.166667 0.5 0.272727
3 0.181818 0.083333 0.666667 0.818182
4 0.272727 0.25 0.75 0.454545
5 0.181818 0.333333 0.5 0.545455
6 0.363636 0.666667 0.583333 0.727273
7 0.181818 0.5 0.666667 0.727273
8 0.363636 0.416667 0.75 0.727273
9 0.181818 0.5 0.666667 0.909091
10 0.181818 0.5 0.75 1

Average 0.236364 0.35 0.641667 0.681818

Table 2: Nash Equilibrium Rates

formally our three main experimental results.

5.2 Formal results

Result 1: Equilibria are mostly Dangerous. In all treatments, Wilcoxon matched-
pair tests run in Period 1 never reject the null hypothesis that groups play 12 collectively
–p-values respectively of 0.4615, 0.2032, 0.4081, and 0.47. As said before, we can only
run this test with confidence in period 1 because observations are no longer independent
in Period 2 onward. With this caveat in mind, we nevertheless report next the outcome
of such tests beyond the first period before completing the analysis with two regressions
explaining both type of play (cautious and dangerous).

With p = 1, the null is never rejected. We take this as sufficient evidence that there
is no coordination problem in the deterministic Nash Demand Game. It follows that
any coordination failure we will encounter will be entirely attributable to the presence of
uncertainty in the amount of resource available. With p = 0.7, the null is never rejected
either. This confirms that coordination is possible even for p < 1. With p = 0.5, the null is
rejected in periods 9 and 10. With p = 0.3, the null is rejected in period 3 onwards. However
the null hypothesis that groups collectively demand 6 is always rejected, which implies that
the cautious equilibrium is rarely reached. It appears that a coordination problem emerges
as we lower the probability that the high value is realized. As a counterpart, we test
whether the sum of demands statistically differs from a sum of demands of 6. For all the
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Figure 6: Distribution of individual demands by treatment

treatments with uncertainty, the null hypothesis that agents coordinate on playing the
cautious equilibrium is rejected in all periods, and at the 1% level.

We complement these findings with a Kruskall-Wallis test on Period-1 group demands
to check whether there are differences in the distributions of group demands across the four
treatments –p-value=0.6057. When extending the test to later periods, we find the null
hypothesis to be rejected in Period 4 onwards. Hence there seems to be significant shift in
the similarity of group behaviour across treatments after some experience is gained. Table
2 and Figure 4 already indicated some disparities across treatments. Figure 4 showed the
salience of 12 as group demand in all but the p = 0.3 treatment. The rate of dangerous
equilibrium from p = 1 to p = 0.5 are, respectively, 68%, 64% and then 35%. In the p = 0.3

treatment, this rate drops to 9% (10 observations out of 110) while the rate of a cautious
equilibrium being played is still only 14.5% (16 observations out of 110).7

7Recall that coordination on the symmetric cautious equilibrium is rejected according to the Wilcoxon
matched-pair tests.
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Probit regression
Dangerous individual demand

Coefficient Std-error P-value
Period 0.036153 0.017275 0.036

Belief ≥ 6 1.385512 0.206568 0.000
Lagpayoff 0.071060 0.029884 0.017

Risk averse 0.060938 0.192834 0.752
DummyT3 -0.553402 0.227114 0.015
DummyT4 -1.664540 0.226226 0.000

Constant -0.543815 0.283394 0.055
Observations 945

Log likelihood -427.11535

Table 3: Determinants of a symmetric dangerous demand

The tendency to adopt dangerous behavior is even clearer when we study individual
demands. We run a probit regression to evaluate the determinants of the probability of
playing the dangerous (symmetric) demand strategy: the dependent variable takes value
1 if the demand by subject i in period t is 4, and 0 otherwise. As independent variables,
we include period to capture whether there is a time trend –e.g. learning. The variable
belief ≥ 6 takes value 1 if the belief of subject i in period t is higher than 6, and 0

otherwise. Recall that a belief higher than 6 render the cautious play irrelevant. We add a
lag variable, lagpayoff, which is subject i’s payoff of in Period t− 1. Under the hypothesis
that risk preferences may influence behavior, we also include a dummy for risk aversion
–value equal to 1 if ρi ≥ 0.6, the average risk-aversion rate in our data, and 0 otherwise– as
potential explanatory variable. Finally, we add dummy variables to capture whether there
is a treatment effect. The reference point is Treatment 2 with p = 0.7.8 We run a probit
regression with robust standard errors clustered at the subject level. Results are reported
in Table 3.

We see that time has a significant impact on demanding 4, as well as the payoff ob-
tained in the previous period. Interestingly, the fact that agents are risk-averse has no
significant impact on the probability of playing dangerously (in line with our theoretical
results). However, in the p = 0.5 and p = 0.3 treatments, there is a significant shift in
the probability of playing dangerously –p-values of 0.015 and below 0.001. Hence, even
though agents’ individual behavior across treatments is statistically hard to distinguish—
with the exception of the p = 0.3 treatment—the probability of focusing on the dangerous

8Treatment 1, where p = 1, is not considered here.
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Probit regression
Cautious individual demand

Coefficient Std-error P-value
Period -0.006441 0.021220 0.761

Belief ≥ 6 -1.137815 0.2620155 0.000
Lagpayoff -0.016733 0.034265 0.625

Risk averse -0.1497 0.238320 0.530
DummyT3 0.909623 0.227349 0.001
DummyT4 1.654761 0.257209 0.000

Constant -0.798751 0.323718 0.014
Observations 945

Log likelihood -339.34841

Table 4: Determinants of a symmetric cautious demand

equilibrium strategy is clearly influenced by uncertainty. Finally, we see that having a high
belief plays a statistically significant (and quantitatively important) role in the likelihood
of adopting a dangerous play. We will address this important point in the next subsection.

In order to conclude this analysis we present a probit regression to evaluate the deter-
minants of the probability of playing the cautious (symmetric) demand strategy, including
the same independent variables (Table 4). Surprisingly, we see that apart from the prob-
ability p, only the variable capturing the high belief of agents have an explanatory power
(quantitatively important and negative). Once again risk aversion does not explain the
behavior of agents, an observation consistent with our theoretical results. Complementing
this with our earlier non-parametric statistical tests, we see that having agents focusing less
on the dangerous equilibrium does not imply coordination on the cautious strategy. This
regression confirms that the pessimistic beliefs of agents play a central role in explaining
the coordination failure on the Cautious equilibrium, we will develop further this argument
at the end of this section.

Result 2: Coordination failure increases a p goes down. The main observation here
is that equilibrium behavior seems to differ across treatments. We saw in the "overview"
subsection that there is an apparent relationship between probabilities and noise in group
coordination. To check for this, we run a Spearman correlation test between p and the
standard deviation in average group demands in the corresponding sessions. We find a
correlation coefficient that is indeed negative –ρ = −0.7341– and the relationship between
p and noise in coordination is significant at the 1% level –p-value=0.0066.
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While our Wilcoxon test confirmed the statistical significance of group demands being
concentrated around 12, we see that the equilibrium rate when p = 0.5 is 8% in period 1
(1 observation out of 12). On the other hand, it is 63% and 58% when p = 1 and p = 0.7,
respectively. In the p = 0.3%, this rate is 27% –and no cautious equilibrium was played
in period 1. Figure 4 and Table 2 already indicated that decrease in probabilities seem to
erode the focus on playing the symmetric dangerous equilibrium.

Likewise, in the first two treatments, only 14 and 19 observations are below 12, respec-
tively. In the last two treatments, 56 and 83 observations are below 12. Hence decrease in
probabilities are linked to increase in systematic shifts from playing a dangerous equilib-
rium –although we have seen in the previous probit regression that it is only when p = 0.3

that such shifts are statistically significant. However, recall that in that treatment, there
is no coordination on playing a cautious equilibrium –out of 110 observations, only 16
are cautious equilibria. Hence, statistically significant shifts from a dangerous equilibrium
lead to a significant non-equilibrium behavior. In addition, a Spearman correlation test
confirms the positive relationship between Nash equilibrium play and p: ρ = 0.7584 with
a p-value below 1%. Hence a decrease in p not only decreases the probability to observe
dangerous equilibrium being played, but it also decreases the likelihood of witnessing (pure
strategies) equilibrium play.

Result 3: Deviation from the Cautious play is due to pessimistic beliefs We
have seen from the results of the probit regressions in tables 3 and 4 that having a high
belief i) decreases the likelihood of playing the symmetric cautious strategy and ii) increases
the likelihood of playing the symmetric dangerous strategy. We saw in the overview that
agents have overwhelmingly pessimistic beliefs: this belief is higher than 6 in 96% of the
observations when p = 1, 92% of the observations when p = 0.7, 91% of the observations
when p = 0.5 and 63% of the observations when p = 0.3. The main observation is that
all these are significantly higher than 6 (at the 1% level using Wilcoxon signed-rank test).
The prevalence of pessimistic belief is thus the main empirical regularity (in our sample)
consistent with the coordination failure we observe in the data.

In order to have a more formal view on the impact of beliefs on the cautious play, we
present in Table 5 a probit regression (clustered on subjects) to evaluate the determinants
of the probability of playing the cautious (symmetric) demand strategy, just for the last
treatment (p = 0.3, the only treatment in which we observe cautious equilibria). An
important result appears when computing the marginal effect of the variable "belief ≥ 6"
on the variable "symmetric cautious demand": this value is −0.36 (p-value 0.002), meaning
that having a high belief decreases the probability of playing the symmetric cautious play
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Probit regression
Cautious individual demand: Treatment 4, p = 0.3.

Coefficient Std-error P-value
Period 0.008046 0.028668 0.779

Belief ≥ 6 -0.966602 0.350842 0.006
Lagpayoff 0.038318 0.056156 0.495

Risk averse -0.409930 0.347742 0.238
Constant 0.772578 0.444961 0.083

Observations 297
Log likelihood -180.63758

Table 5: Determinants of a symmetric cautious demand in the p = 0.3 treatment

(i.e. a claim of "2") by 36% in this treatment.

6 Remarks on overshooting behavior.

Despite its robustness to group deviations and their Pareto-domination of the symmetric
dangerous equilibrium, the symmetric cautious equilibrium is rarely reached due to pes-
simistic beliefs about what others will play. Furthermore, a p goes down, we observe less
(pure strategies) equilibrium play. We present a potential explanation, based on mixed-
strategy equilibria, which may explain the reluctance of agents in focusing on a cautious
play when the probability decreases. Finally, we explore how our findings may shed light
on earlier experiments from the psychology literature.

6.1 Non-Robustness of Cautious Equilibria.

One alternative explanation for the few observed numbers of "cautious" equilibria is its
sensitivity to deviations of other agents. We provide an example to illustrate this intuition,
using the concept of mixed strategies: if an agent thinks that the other agents will play the
dangerous strategy with a positive probability (i.e., they are mixing between the "cautious"
and the "dangerous" play), playing "Cautious" loses a lot of its appeal. Indeed, even a
slight deviation from a cautious strategy (i.e., a small probability for another agent to
deviate to a dangerous play) leads the outcome out of the cautious state. Interestingly,
whenever dangerous and cautious equilibria coexist, there may exist a symmetric mixed
strategy equilibrium in which agents randomize between the cautious and the dangerous
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strategies.9

Consider the example where n = 3, ωL = 6, ωH = 12, and ui(xi) =
√
xi for each

i ∈ N . Given the experimental evidences we gathered, we thus restrict our attention
to the following set of pure strategies xi ∈ {2, 4}. Denote by qi the probability that
agent i plays 4. In a symmetric mixed-strategy equilibrium, qi = qj = q∗ for all i, j ∈
N . Recall that dangerous and cautious equilibria co-exist for p ≤ 0.5. The relationship
expressing the equality between playing the cautious or the dangerous strategy is given
by p = (1−q∗)2

√
2

2+(q∗2−2q∗)
√
2
. Notice that if a symmetric mixed strategy equilibrium is played, its

expected utility coincides with the one of the symmetric dangerous equilibrium, i.e. 2p. In
addition, q∗ is decreasing in p, i.e. dq∗

dp
< 0.

When p = 0.5, mixing requires that q∗ ≈ 0.23. One striking feature of this example
is that an agent will stick to the dangerous strategy even though he thinks that other
agents play dangerous with a low probability (i.e. qj ≥ 0.23), a value lower than the true
probability of observing the high threshold (p = 0.5). Using the formula above, one can
easily check that this remains true for a wide range of parametrization. This illustrates a
"fragility" of the cautious equilibrium: Because even a slight upward deviation brings the
system to an uncertain state, the best response of any agent to this upward deviation is
thus to play dangerously. This may explain why agents seem reluctant to play the cautious
equilibrium and tend to stick to the dangerous one, even when p is low. Even though they
observe that the dangerous play is more and more risky, it is difficult for them to coordinate
on the cautious equilibrium.

We observe two patterns in the data consistent with this line of explanation: 1) we see
that the number of "switches" in demand (between 2 and 4) increases when p decreases,
2) the variance in individual demand increases when p decreases (see Table 8, in the
Appendix). These two observations may imply that, even though agents are more and
more reluctant to playing the dangerous strategy, they are unable to commit fully to
cautious play. We are unable to check formally if agents are playing a mixed strategy,
because the (far more complicated) belief elicitation would have blurred the main focus of
the paper. However, given the seriousness of the coordination failure, this is definitely an
interesting step for further research.

For a given p, an increase in the degree of risk-aversion typically increases the probability
that a symmetric mixed strategy equilibrium exists. For instance, let ui(xi) = (xi)

1
4 for

9There may obviously be other more complicated mixed strategy equilibria. We did not check for these.
Our interest here is linked to subjects seeing the symmetric cautious and dangerous strategies potentially
as focal points. As mentioned above, characterizing the set of mixed strategies equilibria is beyond the
scope of this paper.
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each i ∈ N . Then for p = 0.5, there exists a mixed-strategy equilibrium with q∗ ≈ 0.56.
Notice that within the class of utility functions ui(xi) = (xi)

α, α ∈ (0, 1), for a given p

there is a monotone relationship between α and q∗.
Finally, given a utility profile, within the range of p for which a mixed strategy equi-

librium exists, the expected utility obtained at such equilibria is decreasing with p. The
same is thus true for the utility obtained at the symmetric dangerous equilibrium –since it
coincides with the utility obtained at a symmetic mixed strategy Nash equilibrium.

6.2 On collective optimism.

Our experimental results display a significant amount of overshooting. In previous works,
this has been interpreted as if subjects were collectively overly optimistic about the out-
come, which would be consistent with research demonstrating that agents tend to weight
more heavily desirable outcomes (Zakay, 1983).

While this explanation deserves some credit, we deem it unlikely to explain the phe-
nomenon entirely. In fact, in light of our theoretical and empirical findings based on
strategic interaction, we believe this apparent collective optimism to be the symptom of
a coordination problem. Indeed, the overshooting we observe is of a very specific kind,
whereby agents coordinate precisely on the highest possible amount of available resource.
This attests to the existence of an equilibrium whereby agents collectively behave as if the
threat of resource scarcity were nonexistent. In the theory portion (Section 2) we identified
the existence of such "dangerous" equilibria.

The reason why such equilibria seem to be favored when other, Pareto-dominant equilib-
ria exist seems to be driven by pessimistic beliefs of agents (Result 3): instead of "collective
optimism" we observe inefficient behaviors because of "individual pessimism".

The coordination problem explanation seems plausible, not only because it is consistent
with our empirical findings, but also because it seems to shed light on similar behavior
that other scholars have observed before us. Indeed, the division of private goods has
received much interest in the psychology literature, investigating the effects of resource
uncertainty on cooperative behavior in experimental settings similar to ours (Budescu,
Rapoport and Suleiman, 1992; Budescu, Suleiman and Rapoport, 1995; Rapoport et al.,
1992; Suleiman, Budescu and Rapoport, 1994), but with a major difference in the type
of uncertainty involved: theirs is modeled by a uniform probability distribution which,
unlike ours, is both continuous and unimodal. Their common finding was that as the
spread in the distribution increased, subjects tended to overestimate resource size more
often. One explanation (Rapoport et al., 1992) is that people are cognitively limited in
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their grasp of probability distributions and may base their estimates of resource size on
a weighted average of the lower and upper bounds rather than consider the full spectrum
of possible realizations. In other words, although these subjects were facing a uniform
distribution, they behaved as if the resource size was distributed according to a discrete
bimodal distribution, precisely like in our setting. If this is indeed the case, the subjects
of these experiments were effectively playing a Stochastic Nash Demand Game, possibly
coordinating their actions on a dangerous equilibrium.
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7 Appendix

7.1 Tables

Individual demand 0.3 0.5 0.7 1
0 0 2 0 0
1 5 2 4 0
2 160 55 8 0
3 53 23 10 17
4 64 244 313 288
5 15 12 10 9
6 14 10 10 6
7 4 1 2 3
8 12 7 3 4
9 1 0 0 0
10 2 2 0 2
11 0 1 0 1
12 0 1 0 0

No. Observations 330 360 360 330

Table 6: Distribution of Individual Demands

Cautious or Dangerous Strategy 0.3 0.5 0.7 1
2 160 55 8 0
4 64 244 313 288

No. Observations 224 299 321 288
Proportions 0.678788 0.830556 0.869444 0.8

Table 7: Distribution of Symmetric Nash Strategies
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Individual Demand
Period 0.3 0.5 0.7 1

Mean St Dev Mean Std Dev Mean St Dev Mean St Dev
1 3.878788 2.420712 4.333333 2.17781 4.194444 0.855885 4.393939 1.712808
2 3.818182 1.959824 3.722222 1.632021 4.083333 0.840918 4.181818 0.882275
3 3.181818 1.570321 3.722222 1.649435 3.777778 0.590937 4.030303 0.394085
4 2.969697 1.357499 4.138889 1.658791 3.972222 0.73625 4.242424 1.000947
5 2.818182 1.356801 3.722222 1.185896 4 0.755929 4.212121 0.892944
6 2.575758 1.173411 4 0.985611 4.055556 0.82616 4.060606 0.428617
7 2.787879 1.293193 3.666667 0.828079 4.194444 0.821825 4.030303 0.585494
8 3.272727 1.858641 3.75 0.769972 3.972222 0.506309 4.121212 0.73983
9 3.333333 1.652019 3.638889 0.866941 4.055556 0.79082 4.181818 1.044466
10 3.242424 1.369998 3.722222 0.741085 3.972222 0.506309 4 0

Average 3.187879 1.601242 3.841667 1.249564 4.027778 0.723134 4.145454 0.768147

Table 8: Statistics on Individual Demands across Periods
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7.2 Instructions (For Online Publication)

We attach below the instructions used in the experiment. Two sets of instructions are
shown. The first one refers to Part 1 of Treatment 1 (p=0.7). The second one refers to
Part 2 where subjects played the Holt and Laury lotteries task. Recall that subjects knew
that there would be two parts in the experiment. However, they had no knowledge of the
content of Part 2 while playing Part 1.
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