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Technical efficiency and conversion to organic farming: the case of France 

 

Abstract 

Using a panel of French crop farms, we test whether farmers’ technical efficiency under 

conventional practices is a significant driver of conversion to organic farming. An important 

issue is whether subsidies to organic farming could encourage inefficient farmers to convert. 

We find that the probability of conversion does depend on technical efficiency preceding the 

conversion, but that the direction of the effect depends on farm size. This result is found to be 

robust to the method of calculation of efficiency scores, either parametric or non-parametric. 

This study also confirms that farm’s characteristics impact the probability of conversion to 

organic farming. 

Keywords: organic farming, technical efficiency, subsidies, adverse selection, France 

JEL classifications: Q12, Q15 

 

Efficacité technique et conversion à l’agriculture biologique en France 

Résumé 

Grâce à des données de panel pour les exploitations de cultures en France, nous testons si 

l’efficacité technique des agriculteurs sous des pratiques conventionnelles est un déterminant 

significatif de conversion à l’agriculture biologique. Dans ce cadre, nous regardons si les 

subventions à l’agriculture biologique incitent les agriculteurs inefficaces à se convertir. Nos 

résultats montrent que la probabilité de conversion dépend en effet de l’efficacité technique 

avant conversion, mais que le sens de l’effet diffère selon la taille de l’exploitation. Cette 

conclusion est robuste selon la méthode, paramétrique ou non-paramétrique, de calcul des 

scores d’efficacité. Notre analyse confirme également que les caractéristiques des 

exploitations influencent la probabilité de conversion à l’agriculture biologique. 

 

Mots-clefs : agriculture biologique, efficacité technique, subventions, sélection adverse, 

France 

Classifications JEL : Q12, Q15 
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Technical efficiency and conversion to organic farming: the case of France 

 

1. Introduction 

A number of food-safety events along with increasing concerns for sustainability of ecosystems 

make organic farming (OF) an appealing option for both governments and consumers. As a 

consequence, most governments, particularly in the United States (US) as well as in the European 

Union (EU), have encouraged farmers to convert to OF by distributing conversion subsidies. In 

the EU the first national subsidization programs started in a few countries like Denmark and 

Austria at the end of the eighties, while the EU-wide recognition arrived with the Council 

Regulation 2092/91 and the inclusion of support to OF in agri-environmental measures (Stolze 

and Lampkin 2009).  

Although there exist claims that agricultural subsidies in general have rather favored 

conventional systems to the detriment of organic systems (e.g., Nemes 2009), the provision of 

specific support to OF may be the main motivation to adopt the organic technology (OT) for 

some farmers. In her literature review, Padel (2001) noted for example that the adoption of OT 

had been higher in those European countries where the support program for OF was more 

favorable. If conversion to OF has historically been based on ideological motives and other non-

economic factors, a shift to financial motivation has been observed since the late nineties when 

payments for OF started to be introduced (Rigby, Young and Burton 2001; McCarthy et al. 

2007). Farmers adopting OT based on economic aspects are identified in the literature as 

‘pragmatic’, in opposition to ‘committed’ converters. The possibility of OF specific subsidy 

programs attracting ‘subsidy-hunters’ has been discussed by Pietola and Oude Lansink (2001) 

and Tzouvelekas, Pantzios and Fotopoulos (2001), but seldom tested.  

If the objective of the policy is to support agricultural activity and farmers’ income, then 

attracting ‘subsidy hunters’ into OF may not be a problem per se. However, if the policy aims at 

maximizing organic production at the least possible cost, then it may be worth checking the 

characteristics of farmers benefiting from the subsidy program. Indeed, if ‘subsidy-hunters’ make 

their production choices based on the maximization of subsidies received, they are likely to be 

less efficient than farmers who search for the best combination of outputs and inputs based on 
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prices and available technology. In this particular situation, the subsidy program could induce 

some adverse selection effect that may not be considered desirable by the policy makers.  

The main purpose of this article is to investigate whether less efficient farmers are more likely to 

convert. This test has been made only once, as far as we know by Kumbhakar, Tsionas and 

Sipiläinen (2009). They estimate simultaneously technical efficiency (TE) and organic adoption 

on a sample of Finnish farms. They do not find any evidence of an adverse selection effect since, 

on their sample, inefficiency did not increase the probability of conversion to OF. In this article 

we test the adverse selection hypothesis on a sample of French crop farms by assessing the 

impact of past TE on the decision to convert to OF. By contrast to Kumbhakar, Tsionas and 

Sipiläinen (2009) who perform a joint estimation, we employ a two-stage approach. We estimate 

the influence of several determinants, including TE calculated in a first stage, on the probability 

to convert to OF. In order to draw robust conclusions, TE scores are calculated using both 

parametric methods (stochastic frontier) and non-parametric methods (bias-corrected Data 

Envelopment Analysis (DEA), and Free Disposal Hull (FDH)). In addition we take into account 

that French farmers operate in very different agro-climatic conditions when calculating the TE 

scores. The data used cover several years, enabling us to investigate the influence of several farm 

characteristics, including TE, in past periods, on the decision to adopt OF.  

There exist a number of articles comparing TE of organic producers and conventional producers. 

Such comparisons are an indication of how close to the production frontier each group of farmers 

operates. But because organic and conventional production technologies are different in most 

cases (Mayen, Balagtas and Alexander 2010), such a comparison cannot be used as evidence for 

or against the adverse selection hypothesis. We argue that such evidence can only be obtained by 

estimating simultaneously production choices and decision to convert to OF (Kumbhakar, 

Tsionas and Sipiläinen 2009) or by investigating the role of past characteristics, including TE, on 

the probability to adopt OT (this article).  

Another contribution of this article is to provide the first comprehensive analysis of factors 

driving the adoption of OF in France, a country which lies behind other European partners in 

terms of organic food production. Only 2% of the total arable land in France was under OF in 

2007, a figure lower than what is observed in most European countries, e.g., Spain (4%), 

Germany (5%), Portugal (6%), Italy (9%) and Sweden (10%) (Agence Bio 2010). In 2007, the 
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French government launched a broad reflection on the state of the environment in the country 

(the Grenelle de l’Environnement) and on measures to improve the state of the environment. The 

government has set an objective of a threefold increase of the national area under OF between 

2007 and 2012 (i.e., an increase from 2% to 6%), and an increase to 20% in 2020. Some crucial 

policy steps are necessary to achieve this objective, since at the end of 2008, only 2.1% of the 

national utilized agricultural area (UAA) were under OF. Understanding the determinants of 

conversion to OF and in particular the effect of past performance (as measured by technical 

efficiency) will provide valuable information for designing successful policy programs.  

Section 2 explains the modeling framework and Section 3 provides a description of the data. In 

Section 4, we discuss our hypotheses regarding the role of the main variables of interest on OF 

adoption. In Section 5, we present the methodology for calculating TE scores and estimating the 

probability of conversion to OF. The results are commented in Section 6. Section 7 concludes. 

 

2. Modeling framework 

For comparability purposes, we focus our analysis on crop farming and disregard livestock 

farming, for which requirements for converting to OF are more complex. We assume that a 

representative crop farmer (currently using conventional practices) takes the decision to adopt 

organic technology (OT) or to continue with the conventional technology (CT) based on the 

comparison of his/her expected profit under the two technologies during the next five years. In 

France, this duration corresponds to the period during which the farmer receives subsidies for 

conversion after the conversion occurred (Ministère de l’Agriculture 2001). Since the conversion 

to OF is not an irreversible decision, the farmer may decide to switch back to conventional 

farming at the end of the five-year period. For the period under consideration, there was no 

support scheme for organic farmers in France after the conversion period had ended. 

For simplicity, we assume that the farmer owns one unit of land, and that all this land is 

converted to OF in case of adoption of this technology. In addition, we assume that converting to 

OT does not alter the crop pattern on the farm. We also assume that the farmer is risk-neutral and 

we neglect the discount factor. A farmer will adopt OT in year t if and only if  
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with OT OT OT OT OT OT
t t t t t tp y w x sΠ = − +  and CT CT CT CT CT CT

t t t t t tp y w x sΠ = − + , the t-th period profit 

under the OT and CT, respectively. Variables p, y, w, x, and s denote respectively output prices, 

output levels (and in our case, yields), input prices, input quantities, and subsidies received by the 

farms. The underlying technology is assumed to be different for organic and conventional 

farming:  and ( )OT OT OT OT;t t ty f x θ= ( )CT CT CT;t t ty f x θ= OT
t

CT  where θ  and CT
tθ  represent 

farmer’s TE under OT and CT, respectively. Although most of the machinery can be used in both 

technologies, the ban of applying synthetic fertilizers and plant protection in OF suggests that 

both technologies and production practices are different.  

In general, we expect the price of organic products to be higher than the price of conventional 

products once the production has been organically certified. The price differential may 

compensate (at least partly) for the loss in productivity since yields under OT are expected to be 

lower than yields under CT ( . As the farmer cannot sell products under certified 

organic labeling before the end of the transition period, that is to say before three years of 

conversion have passed

)OT CT
t ty y<

1, the following relationships apply: OT CT  in 1 and 2t tp p t t= + +

                                                

 and 

. The price differential in favor of organic products has for 

example been given evidence by McBride and Greene (2009). These authors have shown that, for 

US soybean producers, the commodity price per bushel was on average more than USD 9 higher 

for organic than for conventional soybean in 2006. By contrast, average organic soybean yields 

were 16 bushels per acre lower than yields of conventional soybean. Unfortunately, official 

statistics on the price of organic products do not exist in France.  

OT CT  from 3 onwart tp p t> + ds

 
1 In France, farmers are allowed to sell their products under the certified organic labeling after two years of 

conversion for field crops and three years for permanent crops. For simplicity, we used a transition duration of three 

years in our model. 
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In our modeling framework, input prices are assumed to be the same ( )OT CT
t tw w= .2 The impact 

of converting to OT on input costs is ambiguous ex ante since we expect, on the one hand, a 

decrease in the use of fertilizers and plant protection under OT, but, on the other hand, an 

increase in the use of labor and machinery costs.  

Finally, under the assumptions of unchanged crop pattern on the farm and similar agricultural 

policy over the period considered, subsidies received by the farm are higher under OT due to the 

specific subsidies received by the farmer during the period of conversion ( 3)

                                                

OT CT
t ts s> . On an 

economic point of view, subsidies are justified by organic farmers’ private internalization of 

social costs caused to the society from environmental pressures. On a practical point of view, 

subsidies may be seen as compensatory payments for the loss in revenues due to technical 

difficulties implying lower yields during the conversion period, and to the impossibility for the 

farmer to sell at the organic price during the first years of the conversion period. In France the 

level of conversion subsidies set by the government is calculated on the basis of the potential 

profit loss depending on the type of crop, and is provided per hectare of specific crop converted. 

For example cereals would be eligible to 366 euros (equivalent to USD 481) per hectare in the 

first two years following conversion, 183 euros/ha (or 240 USD/ha) in the following two years, 

and 122 euros/ha (or 160 USD/ha) in the fifth year (Ministère de l’Agriculture 2001).  

The decision of each farmer to convert to OF will thus depend, among other things, on 

production technology, organic price premium, costs differentials, conversion subsidies and 

farmer’s characteristics including technical efficiency. Since all these factors may differ across 

crops and geographical areas, the decision to convert to OF remains an empirical question.  

 

3. Description of the data  

 
2 This may be a strong assumption since seeds and authorized fertilizers in OF may be more expensive than those 

used in conventional farming. Unfortunately, we do not have any statistical evidence to support this claim. 

3 During the period analysed in our paper, French farmers could receive subsidies in the frame of the EU Common 

Agricultural Policy agri-environmental measures during the conversion period to OF. However, unlike all other EU 

Member States, France did not yet provide subsidies to remain in OF (Stolze and Lampkin 2009). 
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We use farm-specific data extracted from the French Farm Accountancy Data Network (FADN) 

database between 1999 and 2007. The FADN database includes accounting data for a sample of 

professional farms above a specific size threshold, with a five-year rotating sampling system. 

Only crop farms are considered here, based on the FADN classification according to farm 

production specialization based on their products’ gross margin: at least 66 percent of the gross 

margin must come from a specific crop or group of crops. This classification is the standard EU 

classification called Type of Farming (TF). The TF considered here include farms specialized in 

cereal, oil- and protein-seeds (COP) (TF13), in other field crops (TF14), in fruits and vegetables 

(TF28), in horticulture (TF29), in high quality wine (TF37), in other grape production (TF38), in 

permanent crops (TF39) and in mixed crop farming (TF60). All values relating to production 

were deflated by the national price index of agricultural output with base 2000. Values relating to 

capital were deflated by the national price index of inputs contributing to investment in 

agriculture, and values relating to variable inputs were deflated by the national price index of 

inputs currently consumed in agriculture, both with base 2000. 

Within the FADN database, information on whether the farm has engaged in OF is available 

since 2002 only. The specific variable enables to identify farms that are fully operating under CT, 

and farms that are fully operating under OT. Farms that are partially operating under CT and OT 

are not considered here due to data imprecision. Therefore, we consider that a farm has converted 

to OF in period t if it was fully operating under CT at year t-1 and fully operating under OT at 

year t. Since information on OF practices is available since 2002 only, the first conversion period 

that is considered here is therefore 2003. The earlier years of data (1999-2002) are used to 

calculate TE scores of the farmers who are still present in the FADN sample during the 2003-

2007 years. 

Table 1 presents the number and share of farms having converted to OF during the period going 

from 2003 until 2007. In general, the number of farms adopting OT is low, and this is partly due 

to the fact that we cannot consider partial conversions in our database. Overall 66 farms in our 

sample have converted to OF in the selected TFs, which represents 1.1% of the sampled farms. A 

higher rate of conversion is observed for TF38 (other grape production than high quality wine). 

Among the 66 farms, 14 have converted to OF in 2003, 7 in 2004, 17 in 2005, 17 in 2006, and 11 

in 2007. 
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Table 1: Number of OF conversions in the sample per TF 

 

Total number of farms Number of farms 
having converted to 

OF 

% of farms having 
converted to OF within 

the specific TF 
TF13 (COP) 1,972 14 0.7% 
TF14 (other field crops) 940 7 0.7% 
TF28 (fruits and vegetables) 311 4 1.3% 
TF29 (horticulture) 235 4 1.7% 
TF37 (high quality wine) 1,127 16 1.4% 
TF38 (other grape production) 344 8 2.3% 
TF39 (permanent crops) 468 7 1.5% 
TF60 (mixed crop farming) 433 6 1.4% 
Total 5,830 66 1.1% 
 

Table 2 presents descriptive statistics of the FADN sample French farms during the years 1999-

2007. Overall, 7,946 farms were included in the FADN survey over this period. The largest farms 

in our sample are those specialized in COP (TF13) and other field crops (TF14), with an average 

UAA of 142 ha and 111 ha respectively. These farms receive the highest amount of operational 

subsidies, on average, and are the least labor-intensive farms.  

 

Table 2: Descriptive statistics, farm averages for the period 1999-2007 

Type of farming Number 
of farms 

UAA 
(ha) 

Total output 
(euros) 

On-farm 
labor 

(AWU) 

Total 
operational 
subsidies 
(euros) 

TF13 (COP) 2,592 142 112,263 1.6 53,092 
TF14 (other field crops) 1,338 111 187,623 2.4 36,679 
TF28 (fruits and vegetables) 409 14 259,828 4.9 6,461 
TF29 (horticulture) 283 4 252,026 4.7 2,058 
TF37 (high quality wine) 1,482 23 226,841 3.4 3,478 
TF38 (other grape production) 536 41 128,880 2.6 7,943 
TF39 (permanent crops) 628 33 197,173 5.2 15,525 
TF60 (mixed crop farming) 678 82 152,881 2.6 28,759 

Note: 1 AWU (Annual Working Unit) corresponds to a full-time equivalent of 2,200 hours of 

labor per year. 
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4. Factors hypothesized to influence OF adoption 

It is commonly acknowledged that non-economic factors such as political and ideological 

perspectives, sensitivity to environmental problems, health and food quality considerations may 

induce a farmer to convert to OF. Among other examples Läpple (2010) finds that Irish drystock 

farmers who expressed a higher level of environmental concern were more likely to adopt OT in 

2008 and Genius, Pantzios and Tzouvelekas (2006) indicate that, in 1996-1997, Cretan farmers 

who expressed great concern about environmental problems were more likely to convert to OF. 

Our data do not contain any variable on farmer’s opinion about issues related to environment, 

health and food quality. In our model, we introduce a variable measuring the share of agri-

environmental subsidies in total operating subsidies received by the farmer as a proxy for his/her 

environmental awareness and environmental practices. We hypothesize that a farmer getting 

more agri-environmental subsidies under conventional farming is more likely to convert to OF.  

We also control for the farmer’s level of education. In a review of factors influencing the 

adoption of conservation agriculture practices (including, but not restrained to, OT), Knowler and 

Bradshaw (2007) find that ‘education, be it specific or general, commonly correlates positively 

with the adoption of conservation agriculture practices; however, some analyses have found 

education to be an insignificant factor or even to negatively correlate with adoption’. Since better 

educated persons are often more sensitive to environmental problems but also because of the 

assumed positive link between education and knowledge regarding new technologies, we 

hypothesize better educated farmers to be more likely to adopt OT.  

We expect the size of the farm at the time it was operated under conventional practices to 

influence the decision to convert to OF. Pietola and Oude Lansink (2001), for a sample of Finnish 

farms, find that farmers with large land areas and, consequently, good opportunities for practicing 

extensive farming technologies, are more likely to switch to OF. This reason is also proposed by 

Gardebroek (2003) to explain the positive effect of farm UAA on the probability to convert for 

Dutch dairy farms during 1994-1999. By contrast, Läpple (2010) finds that farm UAA has a 

negative effect on farmers’ decision to adopt OT for a sample of drystock farms in Ireland in 

2008. McBride and Greene (2009) also report that the likelihood of choosing OT decreases with 

farm acreage for US soybean producers in 2006. They explain that small farms suffer from size 
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diseconomies and consider OF as an alternative to improve farm returns. The situation may be 

similar in France since the largest farms, which are commonly located in plains, are usually the 

most productive ones (in terms of yields). On the contrary, farms in less favored areas are usually 

smaller and less productive. Hence the yield differential between organic and conventional 

farming ( ot ct )y y−  is expected to be lower for smaller farms, which should then have a higher 

probability to adopt OT. For the specific case of France, we thus hypothesize that larger farms (as 

measured by the farm UAA) are less likely to adopt OT. 

Even if the theory indicates that the higher the subsidies to OF, the greater the probability of 

adoption should be, there is little empirical evidence on the magnitude of the effect. Pietola and 

Oude Lansink (2001) find that the probability of switching to OF increases at an increasing rate 

with increasing premium subsidies to the OF for Finnish farms during 1994-1997 (the estimated 

elasticity is 0.2). Interestingly, the elasticity of the probability of conversion to the non-organic 

specific subsidy rate for land is the same which may suggest that the subsidy to support 

conversion may be seen by some farmers as a way to increase their revenues, at least during the 

period of conversion. Hence policies promoting OF may suffer from selection problems because 

subsidies may attract into OF less productive conventional farmers who are more ‘pragmatic’ 

than ‘committed’. Tzouvelekas, Pantzios and Fotopoulos (2001), in a study of the olive-growing 

sector in Greece, make a similar analysis. They assess that a ‘loose’ eligibility criterion for 

receiving the conversion subsidy has attracted ‘subsidy-hunters’ not truly interested in producing 

organically but rather in absorbing the ‘organic’ financial aid. Kumbhakar, Tsionas and 

Sipiläinen (2009), for a sample of Finnish dairy farms, also find evidence that higher subsidies 

increase the probability of OT adoption. In what follows, we calculate the organic subsidy level 

that each farmer would get over the next five years if converting to OF in the next year. This 

calculation is based on the assumption that the whole area is converted to OF and that the crop 

pattern on the farm does not change after conversion.4 We then use in the model the average 

conversion subsidy per ha of UAA per year. We hypothesize that a higher potential conversion 

subsidy per ha will increase the probability to convert to OF. 

We will also introduce in the model the total amount of Common Agricultural Policy (CAP) 

subsidies received by the farm (as a ratio of its total output), and expect a positive effect as public 

                                                 
4 Crop-specific conversion subsidies were obtained from Ministère de l’Agriculture (2001). 
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subsidies may reduce the farm’s financial pressure. This effect was hypothesized and given 

evidence by Genius, Pantzios and Tzouvelekas (2006), who find that subsidies received in the 

context of the CAP by Cretan farmers in 1996-1997 increase their probability to convert to OF. 

The effect of non-organic subsidies on the probability to adopt the OT may also reflect the 

attitude of the farmer towards subsidies. However, this effect may be ambiguous. On the one 

hand, ‘subsidy-hunters’ may be interested in both non-organic and organic subsidies, implying a 

positive effect. On the other hand, farmers receiving a large amount of CAP subsidies may find it 

sufficient and may not be interested in getting additional subsidies. 

Farmers who make an intensive use of fertilizers and plant protection products under 

conventional practices may experience a larger reduction in input costs after adoption of OT, and 

may thus be more likely to adopt. However, a non-intensive use of fertilizers and plant protection 

products before adoption could also indicate farmers’ environmental awareness and thus a higher 

probability to adopt OT. Also, conventional farmers who use a relatively low level of fertilizers 

and plant protection products are more likely to use a technology which is in fact similar to the 

OT, and may thus be more likely to adopt OT. The effect of the intensity of fertilizers’ and plant 

protection products’ use before conversion is therefore ambiguous but we expect the latter effect 

to dominate, that is to say low input use under conventional farming should increase the 

probability to convert to OF. In the forthcoming empirical application, we will use the ratio of 

fertilizer expenditure over the standard gross margin as a measure of intensity of fertilizer use, 

but we do not have a priori expectations on the sign of the effect. 

The price differential between OT and CT, which has an impact on expected revenues, may also 

influence farmers’ decision to adopt OT as motivated in the modeling section. Official statistics 

regarding the price of organic products do not exist in France. We therefore make use of the 

information available in our FADN sample to compute a price index for organic products and 

build a variable that measures the price premium that farmers could get if they were switching to 

OF. This calculation is made under the assumption that the cropping pattern remains unchanged 

on the converting farm and that the entire crop area is converted.5 We are not aware of any study 

                                                 
5 The price index for organic products was calculated from the FADN data, using the quantities and values of main 

categories of products sold by farmers fully engaged in organic production. 
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using such a variable to explain adoption. In our analysis we expect farmers with a higher 

expected price premium to have a higher probability to adopt OT. 

As mentioned earlier, there exists a number of studies comparing the TE of organic producers 

and conventional producers but few try to assess the influence of TE before adoption on the 

decision to convert to OF. Some studies suggest that organic farmers are more technically 

efficient compared to conventional farmers: e.g., Tzouvelekas, Pantzios and Fotopoulos (2001) 

applying stochastic frontier to data on olive-growers in Greece, and Oude Lansink, Pietola and 

Bäckman (2002) applying DEA on data from crop and livestock farms in Finland. Other studies 

suggest the opposite: e.g. Serra and Goodwin (2009), using the local maximum likelihood 

method introduced by Kumbhakar et al. (2007), find that (Spanish) organic farms have efficiency 

levels that are below conventional farms. Strictly speaking, the difference between average 

technical efficiencies between organic and conventional farmers cannot be interpreted to suggest 

that one group is more efficient than the other one since production frontiers are different for 

organic and conventional holdings. Differences in efficiency simply indicate that farms belonging 

to the group with the higher average TE operate closer to their production frontier than farms 

from the other group do to theirs. In a recent article Mayen, Balagtas, and Alexander (2010), 

using formal testing, reject the hypothesis that organic and conventional farms employ a single, 

homogeneous technology using data on US dairy farms.  

To our knowledge, the only study which considers TE as a potential factor driving adoption of 

OT is Kumbhakar, Tsionas and Sipiläinen (2009). They propose a joint estimation where TE 

drives both technology choice and output. Based on a sample of Finnish dairy farms (over the 

period 1995-2002), their results suggest that inefficiency is not a driving force behind adoption of 

OT as the inefficiency score has a negative effect on the probability of adoption. The level of TE 

achieved under CT may have an ambiguous effect on the decision to adopt OT. On the one hand, 

farmers who are already technically efficient under CT, that is to say who have rationalized their 

use of inputs, may adopt more easily a technology that is complex and that uses low levels of 

inputs. On the other hand, conversion implies a decrease in yields, and this may reduce incentives 

to convert for technically efficient farmers who obtain high yields under CT. The ambiguity is 

reinforced by the allocation of conversion subsidies. Indeed, conversion subsidies may 

compensate for the loss in revenue during the conversion period, and thus may reduce the 

negative influence of TE on the decision to convert to OF; it may in turn motivate highly efficient 
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farmers to convert. However, if there is no obligation or no financial incentives to remain under 

OT after the conversion period, as it was the case in France during the period studied here, then 

this may attract low efficient farmers in the organic sector, who may revert to CT once the 

compulsory conversion period has ended.  

In the forthcoming empirical application, in order to test for the effect of TE under CT on the 

decision to convert to OF, we consider four-year average of TE calculated before adoption for 

future OF adopters. By contrast to Kumbhakar, Tsionas and Sipiläinen (2009) who use data from 

the same period to estimate TE and the probability to convert, we use data from the period before 

conversion to OT. Moreover, we use an average over several years in order to smooth for climate 

shocks that may affect TE levels. 

OF is generally perceived to be riskier than conventional farming, as organic farmers are 

restricted in the use of chemical pesticides and fertilizers that could help them in reducing 

production risk (Gardebroek, Chavez and Oude Lansink 2010). Organic farmers are therefore 

more exposed to disease or parasite outbursts, and to harsh weather conditions. Also, as it is the 

case with any new technology, a farmer willing to adopt OT has to face uncertainty regarding 

expected revenues and costs since it may take some time for him/her to learn about this new 

technology. Using data from a sample of Spanish farms specialized in the production of arable 

crops, Serra, Zilberman and Gil (2008) find evidence that both conventional and organic farmers 

are risk averse. Both groups are found to exhibit decreasing absolute risk aversion (DARA) but 

organic farmers have preferences that are very close to constant absolute and relative risk 

aversion (CARA and CRRA). The authors explain that these differences may come from the fact 

that organic farmers in the sample considered are wealthier than conventional growers (and may 

thus be willing to take more risk). Gardebroek (2006), using a Bayesian random coefficient 

model, finds that organic arable farmers were less risk averse than conventional arable farmers in 

the Netherlands during the period 1990-1999.  

The measurement of risk aversion goes beyond the scope of this article. However, we will 

consider explanatory variables that may be linked to unobserved risk aversion. We include a 

categorical variable to control for the legal status of the farm which distinguishes between farms 

managed through a sole proprietorship, farms under partnership management, and companies. In 

the latter, private assets are separated from professional assets and therefore we would expect 
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farms run as companies to be less risk averse than individual farms. We will also control for the 

ratio of farm debt to assets and hypothesize that farms with a higher share of debt will be less 

likely to convert to OF due to their current financial vulnerability. 

As far as we know, the role of social learning and neighborhood effects on the adoption of OT 

has not been extensively studied yet. It is recognized that information provided about new 

technologies (by other farmers, media, meetings, farmers’ unions, extension officers, etc) usually 

positively correlates with adoption of these technologies (Knowler and Bradshaw 2007). 

Moreover, observing successful organic farmers could give incentives to conventional farmers to 

convert. For example, Lohr and Salomonsson (2000) find that, for a sample of Swedish farmers 

in 1990, the number of organic farms in a farmer’s district increases his/her probability to 

convert. Thus we should expect CT farmers neighboring OT farmers to learn more quickly about 

the technology and to have a higher probability to adopt OT. Unfortunately we do not have any 

information on the total number of farms engaged in OF in the neighborhood of the farms 

surveyed in our sample.  

A summary description of all variables that will be used as explanatory factors in the OF 

adoption model is available in Appendix A1 and some descriptive statistics of these variables are 

presented in Appendix A2. The summary statistics indicate that farmers who convert to OT have 

(on average) lower TE scores (we explain how TE scores are calculated below), operate a smaller 

farm, are more educated, receive a higher share of agro-environmental subsidies, and are less 

indebted than farmers who continue to operate under CT.  

 

5. Methodology 

We proceed in two steps. In the first step, we calculate the TE scores of all farms present in the 

FADN sample between 1999 and 2007. We use three competing methods to obtain TE scores and 

take into account that farmers operate in different agro-climatic conditions. In the second step, we 

estimate the probability of a farm converting to OF in a specific year as a function of a set of 

farm and farmer characteristics before conversion, including the farmer’s average TE score 

computed over the four years preceding the conversion. The second-stage estimation is made on a 

selected sample of farms: those farms that are present at least one year during the 2003-2007 

period and for which the TE score could be calculated over the four years preceding conversion. 
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Since our sample is a rotating sample, we are not able to control for entry and exit of farms over 

time. We believe that this shortcoming of the dataset will not induce selection bias in the second-

stage estimation.  

We chose to calculate the average TE score over the four years preceding the conversion in order 

to get a “robust” measure of TE for each farmer. Indeed, farmers may exhibit lower TE scores 

when facing adverse weather conditions. A four-year average allows smoothing such effects and 

avoid peaks or drops in TE that would be only artifacts of specific years. Going further than four 

years would have entailed the loss of too many observations at the second-stage of the analysis. 

Further details on the methodology are provided in the following. 

 

5.1. First stage: calculation of TE 

In the literature two main approaches compete to calculate TE: parametric methods, in particular 

stochastic frontier (SF), and non-parametric methods, in particular DEA and FDH. The SF 

approach relies on estimating a production function with a double error term, including a random 

error term and a term representing farmers’ technical inefficiency (see Aigner, Lovell and 

Schmidt 1977). This method enables to account for noise, but may give rise to misspecification 

errors. By contrast, DEA is a deterministic method but does not rely on specification assumptions 

(see Farrell 1957; Charnes, Cooper and Rhodes 1978). The idea behind DEA is to construct, with 

linear programming, a piece-wise frontier that envelops all observations of the sample used. The 

distance of an observation to the frontier represents its technical inefficiency, with observations 

on the frontier being fully technically efficient and with a TE score of 1. FDH relies on the same 

idea, except that the convexity assumption of the frontier is relaxed, and thus the frontier is step-

wise and envelops the observations more closely than DEA does (see Tulkens 1993). 

Non-parametric methods are sensitive to outliers as they construct the frontier with observations 

at hand. For this reason, in addition to cleaning manually inconsistent data, outliers were removed 

before efficiency computations with DEA and FDH, based on Wilson (1993)’s outlier detection 

method that relies on comparing geometric volumes spanned by subsets of data. Moreover, 

efficiency results from the DEA method may be affected by sampling variation. This problem, 

inherent to the method, implies that distance from the frontier (and thus inefficiency) may be 

underestimated if the most performing units of the population are not included in the sample at 
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hand. To correct for this problem, we use the smooth homogenous bootstrap proposed by Simar 

and Wilson (2000). 

In order to draw robust conclusions, the three approaches, namely SF, DEA and FDH, are used 

here. In each case the model includes one single output, namely total output in value, and four 

inputs, namely UAA (ha), total labor used in Annual Working Units (AWU; 1 AWU corresponds 

to one full-time equivalent that is to say 2,200 hours of labor per year), intermediate consumption 

in value, and the value of assets. The Cobb-Douglas function is specified for the SF approach.6 

An input-oriented model is assumed for DEA and FDH. The assumption of variable returns to 

scale (VRS) is made for the DEA model. 

Farmers’ TE may be affected by agro-climatic conditions, and the efficiency scores calculated 

may not reflect only farmers’ management practices but may also incorporate some inefficiency 

component due to unfavorable natural conditions if the latter are not controlled for in the 

efficiency model. In our case, this may in turn affect the influence of TE on the probability to 

convert. For this reason, TE frontiers are constructed separately for groups of farms, depending 

on their agro-climatic conditions. Farms are firstly classified into two or three groups within each 

TF with a hierarchical agglomerative clustering procedure based on annual municipality data 

relating to slope, altitude, average monthly minimal and maximal temperatures, average monthly 

water deficits and average monthly climatic indices (calculated with sunshine, frost durations and 

evapotranspiration).7 Then TE is calculated with separate frontiers for each cluster in each TF 

and in each year of the period. 

                                                

 

5.2. Second stage: estimation of the determinants of the conversion to OF 

Following (1), we assume that farmer i decides to convert to OF in period t if the expected net 

benefit of this decision is positive, that is if  

 

 
6 When using a Translog specification for the stochastic frontier, convergence could not be achieved in some cases. 

7 Details on the clustering procedure are available upon request. 
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The latent variable, , is not observed; only the decision to adopt OT or not is known to the 

econometrician. We assume that farm i’s expected net benefit from converting to OF can be 

modeled as follows: 

*
itd

itd* '
it itε= +X β , where the vector Xit includes characteristics of the farmer 

and its environment. The decision model at time t is thus written as 

 

* ' 0it it itd ε= + ≥X β . (3) 

 

And the probability that farmer i adopts OT in year t is estimated using the following Probit 

model: 

 

( )'
it it itd F ν= X β + , (4) 

 

where dit equals 1 if the expected net benefit  is positive, and 0 otherwise. Function F is the 

cumulative distribution of the 

*
itd

itε  error term, assumed standard normal. Maximum-likelihood 

provides consistent estimates of the parameter vector β . 

Our purpose is to model the decision to convert to OF. In the data used farmers who do adopt OT 

take the decision to convert to OF only once. Therefore, in our adoption model, a farm that 

converts to OF is included in the sample only once, in the year that the conversion is made, and 

excluded from the sample in the subsequent years (Khanna and Damon 1999 followed a similar 

approach). For consistency, and to avoid the presence of repeated observations over time, a 

random draw is designed such that non-adopters also appear only once in the final sample. Since 

it is likely that the decision to adopt OT is made (at least) a year before the actual conversion, and 
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in order to eliminate simultaneity bias, all explanatory variables are measured in year t-1, except 

for the TE proxy that is measured as the average of TE scores calculated in years t-4, t-3, t-2 and 

t-1, with t being the year of conversion for farmers who convert and being the year of observation 

E score calculated 

ith FDH; one regression including the average TE score estimated with SF.  

al). We indicate in Table 3 when the null assumption that the two means 

d from the SF, itself 

eing higher than the TE score obtained with DEA under VRS assumption. 

for farmers who remain in conventional farming.  

Three regression models are estimated, differing in the TE score used as an explanatory variable: 

one regression including the average (over the four years preceding conversion of the converting 

farm or preceding observation of the conventional farm) TE score calculated with DEA under 

VRS and corrected for sampling bias; one regression including the average T

w

 

6. Results 

Table 3 presents technical efficiency averages per TF calculated with the three different methods, 

with ex ante clustering of farms depending on their agro-climatic conditions. We distinguish 

farmers who converted to OF between 2003 and 2007, and farmers who continued to use a CT 

during the years 2003-2007. For farmers who converted to OF, we report the four-year average 

TE score before the conversion period. For farmers who remained in conventional farming, we 

report the four-year average TE score before the year of observation. For each of the three TE 

scores (DEA-based, FDH-based, SF-based), we performed mean comparison tests between the 

two groups of farmers within the same TF (under the assumption that the variances in the two 

sub-samples are unequ

are equal is rejected.  

The average TE scores by TF vary depending on the computation method. For all TFs, the 

average TE score obtained using FDH is higher than the TE score calculate

b
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Table 3: Technical efficiency sc  the period 1999-2006 

  Bias-c EA-
ased

FDH-based SF-based 

oresa: averages over

orrected D
b  

TE s
Farms 

cor cor cor
  

rem g 
under CT fut  b

rem g 
under CT fut b

rem g 
under CT 

e 
Farms 

TE s
Farms 

e 
Farms 

TE s
Farms 

e 
Farms 

ainin under 
ure OT

ainin under 
ure OT  

ainin under 
future OT b

TF13 (COP) 0.73 0.74 0.90 0.92 0.80 0.85 (***)
TF14 (other field crops) 0.71 0.74 0.91 0.98 

0.50 (**) 0.70 (***) 

mixed crop farming) 0.72 0.74 0.93 0.93 0.84 0.90 (**) 

(***) 0.81 0.79 
TF28 (fruits and vegetables) 0.69 0.73 0.94 0.93 0.82 0.80 
TF29 (horticulture) 0.78 0.77 0.97 0.97 0.84 0.85 
TF37 (high quality wine) 0.56 0.78 0.72 0.72 
TF38 (other grape production) 0.63 

0.65 0.63 0.89 0.91 0.72 0.75 
0.60 0.82 0.77 0.69 0.63 (*) 

TF39 (permanent crops) 
TF60 (
        

Total number of farms 6,096 65 6,096 65 6,156 65 
a Larger scores indicate higher TE. 
b (*), (**), (***) respectively indicates that the null assumption that the two means (mean for 

farms remaining under CR and mean for farms under future OT) are equal is rejected at the 10%, 

%, and 1% level of significance. 

attern and no 

5

 

The mean comparison tests indicate that farmers growing field crops (TF13, 14, and 60) and who 

will convert to OT have higher average TE scores than farmers who will keep on operating with 

CT (except for TF14 with SF). The difference in average TE scores is statistically significant for 

SF-based TE scores in TF13 and TF60, and for FDH-based TE scores in TF14. For farmers 

engaged in wine and grapes production (TF37 and TF38), the average TE scores for farmers who 

will convert to OT are lower than the average TE scores for farmers who will remain with CT. 

The difference between average TE scores is statistically significant for DEA-based and FDH-

based TE scores in TF37 and for SF-based TE scores in TF38. Finally, for farmers growing fruits 

and vegetables (TF28) or engaged in horticulture (TF29), there is no clear p

statistically significant difference between TE scores of the two groups of farmers. 
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We present below the estimation results of the three Probit regression models, which only differ 

by the method of calculation of the TE scores (DEA-based, FDH-based, and SF-based) used as an 

explanatory variable. The three models are estimated on a sample of 3,761 farmers, including 43 

OT adopters. The number of farms adopting OT is quite small in our sample (see Table 1), which 

makes it necessary to estimate a unique adoption model with all TFs merged. A number of 

score. In all three models, the direct effect 

f the TE score on the probability of conversion is negative and statistically significant while the 

cross term with farm size has a positive effect. Hence, the effect of past performance on the 

robability of conversion to OF depends on farm size.  

                                                

models were estimated differing on the explanatory variables’ combination, and we kept the one 

which provided the best fit to our data. In this model, the TE score has been interacted with the 

size of the farm (UAA).8  

Results of the Probit estimations are presented in Table 4 (robust standard errors were 

calculated). The four-year average TE score is found to have a significant impact on the 

probability of conversion directly as well as indirectly through its cross effects with farm size (TE 

× UAA), whatever the method used to calculate the TE 

o

p

 

 

 

 

 

 

 

 

 

 
 

8 Farmer’s age and regional dummies were tested as well as terms interacting TE score with the potential conversion 

subsidy that the farmer could receive if converting next year (POTCONVSUBS) and with the potential difference in 

price between organic and convention products (POTDIFPRICE). 
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Table 4: Probability to convert to OF (3,761 farmers) 

robability of 
 to OF in the 

odel with EA-based odel with FDH- odel with SF-

e 

P
conversion
next year 

M
TE score 

D M
based TE score 

M
based 
TE scor

 Coef. P>z Coef. P>z Coef. P>z 
       
TE score 
(past four-year average)

   

 

 

 (0/1) 
ar 2005 (0/1) .204 .161 .173 

0/1) .642 .528 .545 
.022 .137 .125 

seudo R2 0.0865  0.0865  0.0856  
Log-pseudolikelihood -214.67697  -214.6904  -214.89524  

 -1.490 
.010

0.027 
041 

-1.517 
.014

0.026 
043 

-1.491 
.021

0.062 
039 UAA 

.) 
-0 0. -0 0. -0 0.

EDUC = 1 (ref - - - - - - 
EDUC = 2 0.113 0.458 0.108 0.476 0.098 0.520 
EDUC = 3 0.455 0.008 0.453 0.008 0.417 0.014 
STATUS = 1 (ref.) - - - - - - 
STATUS = 2 -0.053 0.716 -0.021 0.885 -0.003 0.981 
STATUS = 3 0.167 0.452 0.212 0.333 0.242 0.268 
SH_ENVSUBS 0.011 0.000 0.010 0.000 0.011 0.000 
DEBTTOASSET 

 
-0.010 0.817 -0.006 0.848 -0.008 0.818 

FERT_SGM -1.030 0.313 -1.063 0.297 -1.010 0.322 
SUBTOOUT 0.198 0.750 0.104 0.865 0.118 0.850 
POTDIFPRICE 0.003 0.260 0.003 0.235 0.002 0.496 
POTCONVSUBS 0.000 0.793 0.000 0.816 0.000 0.717 
TE × UAA 

 (0/1) 
0.014 0.053 0.015 0.054 0.024 0.042 

Year 2003
ear 2004

0.144 
.368 

0.531 
.080 

0.172 
.389 

0.451 
.061 

0.156 
.401 

0.495 
.053 Y 0 0 0 0 0 0

Ye 0.272 0 0.296 0 0.289 0
Year 2006 ( 0.103 0 0.137 0 0.132 0
Constant -1.439 0 -1.109 0 -1.206 0
       
N 3,761  3,761  3,761  
P

Note: in bold, significant effects. Definition of explanatory variables in Appendix A1. 

 

In our sample, the elasticity of the probability of conversion with respect to the TE score is found 

to be negative for low values of farm size and positive for high values of farm size. The turning 

point is calculated at 109 ha in the model using DEA-based TE scores, 101 ha in the model using 

FDH-based TE scores, and 61 ha in the model using SF-based TE scores. For the sample used for 
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estimating the model, the average farm size is 87 ha, hence the elasticity of the probability of 

conversion to the four-year average TE score is negative for some farms and positive for others. 

Because our sample gathers farms engaged in different production specializations (TF), it is 

important to check whether our main result, that the elasticity of the probability of conversion 

depends on farm size, holds for the entire group of farmers as a whole or if it could be driven by 

heterogeneous effects across different TFs. The number of adopters in each TF is too small to 

permit separate Probit estimations by TF. However, it is possible to interact TF dummies with the 

four-year average TE score and/or to add TF dummies in the model. We re-estimated the three 

Probit models under these different specifications. In any case do the TF dummies come out 

significant. This indicates that our findings hold for all farmers in our sample whatever their TF. 

The main conclusion would thus be that ‘low-efficient’ farmers operating a farm which size is 

below a certain threshold (61 ha to 109 ha depending on the model) are more likely to convert to 

OF while ‘high-efficient’ farmers operating a farm which size is above this threshold are more 

likely to convert to OF. In our sample though, the average size of farms growing field crops is 

higher than the threshold (in TF13 and TF14 the average farm size is 142 ha and 115 ha 

respectively, and the average farm size is 82 ha in TF60) while the average farm size for farms 

growing grapes, fruits, vegetables or flowers is lower than the threshold. Our findings thus may 

ed probabilities have been calculated at the sample mean for each 

pe of farming activity, and under the assumption that the average TE score is 1 (fully 

chnically efficient farmers). 

indicate that a higher past performance induces a higher probability of conversion to OF in field 

crops but a lower probability of conversion to OF in other TFs. 

In order to assess the magnitude of the effect of TE on the probability of conversion to OF, we 

calculate, for each type of farming activity, the expected probability of conversion if all farmers 

were technically efficient (Table 5). In the second and third columns of Table 5, we report the 

current (observed) probability of conversion and the current number of organic farmers. We then 

show, for each of the three models (models with DEA-based, FDH-based, and SF-based TE 

scores) the predicted probability of conversion and the corresponding predicted number of 

organic farmers. These predict

ty

te
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Table 5: Predicted probability of conversion er of o ers if  

ere technically efficient 

  

h

 and numb rganic farm all farmers

w

 

Model wit
DEA-based TE 
scores 

h Model wit
FDH-based
scores 

h 
 TE 

Model wit
SF-based T

 
E scores 

Type of farming urrent 
f 
sion 

urrent 
mber of 
 farmers

redicted C
prob. o
conver

C
nu
OF

P
prob. of 

sion

redicted
 
nic 

mers 

redicted 

conver

P  P
# of

gaor
far

prob. of 
sion

redicted
 
nic 

mers 

redicted 
f 
sion

redicted # 
rganic 
ers conver  or

far

P  P
# of

ga
prob. o
conver

P
of o

rmfa

         
TF13 (COP) 0.006 9 0.009 13   

 
other grape prod.) .021 .003 .006 .007 
permanent crops) .018 .001 .004 .002 

F60 (mixed crop farm.) 0.010 2 0.006 1 0.008 2 0.011 2 

0.007 11 0.014 20
TF14 (other field crops) 0.012 7 0.007 4 0.008 4 0.012 7 
TF28 (fruits and veg.) 0.011 2 0.004 1 0.010 2 0.007 1 
TF29 (horticulture) 

F37 (high qual. wine) 
0.020 

.015 
1 

2
0.004 

.002 
0 

 
0.011 

.005 
1 

 
0.008 

.005 
0 

 T 0 1 0 2 0 4 0 4
TF38 (

F39 (
0
0

5 
5 

0
0

1 
0 

0
0

1 
1 

0
0

2 
1 T

T
         
Total  43  22  26  38 
 

All three models predict an increase in the number of organic farmers producing COP (TF13). In 

the model using SF-based TE scores, the number of organic farmers more than doubles, while the 

magnitude of the effect is smaller in the other models. The number of organic farmers is found to 

decrease or remain constant in the other types of farming. This is because the elasticity of the 

probability of conversion is negative at the mean of the corresponding samples. All in all, if all 

farmers in our sample were technically efficient, the number of organic adopters would be lower. 

e explained by smaller farms generating lower yields under CT than 

Depending on the model, it would vary from 22 to 38, which corresponds to a decrease in the 

number of adopters in the range of 12% to 50%.  

The three models also provide consistent findings on the positive role of education (EDUC): 

better educated farmers are found to be more likely to convert to OF than less educated farmers. 

More educated farmers may be more sensitive to environmental and food safety issues, they may 

also learn more quickly about new technologies, than less educated farmers. In the three models, 

smaller farms (when size is measured by UAA) are found to be more likely to adopt OT all other 

things equal, which may b

larger farms (and thus expecting a lower yield loss if converting to OF). These two findings 

confirm our expectations. 
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In the three Probit regression models, we obtain the expected result that farmers receiving more 

agri-environmental subsidies (as a percentage of total subsidies) (SH_ENVSUBS) are more likely 

to convert to OF. Also, farmers who incur higher fertilizers expenditure (relatively to their 

standard gross margin) (FERT_SGM) are less likely to convert to OF (this variable is however 

not significant in any of the three models). The coefficients for the potential difference in prices 

(organic versus non-organic products) (POTDIFPRICE) and the potential conversion subsidies 

(POTCONVSUBS) that could be received annually if converting next year are positive as 

expected, but not significant. The variables representing risk, namely legal status (STATUS) and 

stimate the model 

sing the weighted endogenous sampling maximum likelihood (WESML) estimator derived by 

Manski and Lerman (1977). The log-likelihood function is written as follows: 

 

indebtedness (DEBTTOASSET) are not significant in any of the models, as well as the proxy for 

subsidy dependence (SUBTOOUT). 

Because the proportion of adopters is very small in the full sample, we re-estimated the three 

Probit models on a choice-based sample (see Greene 2003), that is a sample in which the 

proportion of adopters is made artificially higher (the non-adopters are randomly selected). Our 

choice-based sample contains 238 observations, among them 43 adopters and 195 non-adopters, 

hence the proportion of adopters has been increased to 18% compared to our original sample. In 

order to correct the bias induced by over-sampling one group of farms, we e

u

( ) ( ) ( ){ }, ln 1 ln 1it it iti tL d F d Fρln ⎡ ⎤= + − −⎢ ⎥⎣ ⎦∑ ' '
it itX β X β  (5) 

 

where  describes the adoption decision (it itd 0d =  or 1dit = ), 

( ) ( )( )1 1 0 01it it itd dρ κ ζ κ ζ= + − , with 1κ  and 0κ  the true population proportions (obtained 

from the representative sample of farms), and 1ζ  and 0ζ  the proportions of adopters and non-

adopters in the choice-based sample.9The estimation results are shown in Appendix A3.  

                                                 
9 The first and second derivatives of the log-likelihood function are weighted likewise and the asymptotic covariance 

matrix is corrected (Greene 2003). 



Working Paper SMART – LERECO N°10-17 

 

 26

The results obtained for the choice-based sample are found to be very close to the ones obtained 

for the full sample. However some of the explanatory variables have become significant in the 

models based on the choice-based sample, in particular the ratio of debt to asset 

(DEBTTOASSET) and the potential difference in prices between organic and conventional 

products that may be received by converting farmers (POTDIFPRICE). The ratio of debt to asset 

has the expected negative sign in the three models and is found significant in the models using 

the DEA- and FDH-based TE scores. This confirms that farms already indebted are less likely to 

take any risk in converting to OF. This result may also indicate that the farming assets are to 

some extent technology specific. Farmers who have recently invested (in technology specific 

assets) would incur higher switching costs and are, therefore, more reluctant to switch. A higher 

ne the frontier). We call these variables TE ranks. The 

ree Probit models are then re-estimated on the full sample using TE ranks instead of TE scores. 

Estimation results are shown in Table 6. 

 

 

 

 

 

expected difference in prices between organic and conventional product is found to significantly 

increase the probability of adoption in the three models, which also confirms our intuition. 

The TE scores were calculated for the whole sample based on separate frontiers for each TF, each 

year, and each cluster (defined from agro-climatic conditions). These TE scores were then pooled 

together in the Probit model. One could argue that TE scores calculated under different frontiers 

are not directly comparable. However, estimating TE scores for all farmers considering a unique 

frontier would not be relevant either, since farmers in different TF are likely to operate under 

different technologies (in particular for farmers growing field crops and farmers growing fruits or 

vegetables). In order to test the robustness of our results, we use relative TE scores instead of 

absolute TE scores used for obtaining results of Table 4. The relative TE score for farmer i is 

defined as the percentage of farms that have a lower TE score than farmer’s i own TE score (in 

the group of farms that are used to defi

th
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Table 6: Probability to to OF using TE-ranks (3,761 farmers)

robability of 
onversion to OF in 

 with DE ed 
E rank 

 with FDH d
E rank 

 with SF-b  
E rank 

 convert  

P
c
the next year 

Model A-bas
T

Model -base
T

Model ased
T

 Coef. P>z Coef. P>z Coef. P>z 
       
TE rank based on past  

erage score

f.) 

S 
 

 

 

 (0/1) 
ear 2005 (0/1) .302 .157 .338 .111 .302 .153 
ar 2006 (0/1) .484 .423 .510 

.000 .000 .000 

 
og-pseudolikelihood -213.4851  -215.61392  -214.64052  

four-year av -0.009 0.013 -0.007 0.062 -0.007 0.029 
UAA -0.007 0.018 -0.003 0.104 -0.005 0.031 
EDUC = 1 (ref.) - - - - - - 
EDUC = 2 0.111 0.467 0.111 0.463 0.121 0.430 
EDUC = 3 0.431 0.012 0.455 0.008 0.467 0.006 
STATUS = 1 (re - - - - - - 
STATUS = 2 -0.002 0.989 -0.050 0.732 -0.016 0.910 
STATUS = 3 0.247 0.261 0.157 0.480 0.207 0.342 
SH_ENVSUB 0.011 0.000 0.010 0.000 0.010 0.000 
DEBTTOASSET -0.009 0.807 -0.010 0.809 -0.006 0.852 
FERT_SGM -0.926 0.362 -1.059 0.295 -1.087 0.286 
SUBTOOUT 0.035 0.956 0.163 0.791 0.114 0.853 
POTDIFPRICE 0.002 0.590 0.002 0.386 0.003 0.315 
POTCONVSUBS 0.000 0.773 0.000 0.903 0.000 0.962 
TE × UAA 0.000 0.012 0.000 0.191 0.000 0.035 
Year 2003 (0/1) 0.161 0.485 0.178 0.437 0.160 0.487 
Year 2004 0.388 0.064 0.425 0.041 0.383 0.067 
Y 0 0 0 0 0 0
Ye 0.153 0 0.174 0 0.143 0
Constant -1.955 0 -2.202 0 -2.058 0
       
N 3,761  3,761  3,761  
Pseudo R2 0.0916  0.0826  0.0867 
L

Note: in bold, significant effects. Definition of explanatory variables in Appendix A1. 

 

Table 6 indicates that the three models provide results that are similar to the ones obtained using 

TE scores and presented in Table 4. The elasticity of the probability of conversion with respect to 

the TE score is still a function of farm size, with a negative value for small sizes and a positive 

value for large sizes. The turning point in the three models is as follows: 148 ha in the model 

using DEA-based TE ranks, 110 ha in the model using FDH-based TE ranks, and 93 ha in the 
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model using SF-based TE ranks. Thus, the turning point is slightly higher when using TE ranks 

bsidies and expenditure in fertilizers) do impact 

the probability of conversion to OF. The low number of OT adopters in our sample and the 

than when using TE scores, but not by a very large margin. 

 

7. Conclusion 

Using a sample of French crop farms over the 1999-2007 period, we test whether technical 

efficiency achieved under conventional practices is a driver for conversion to OF. Despite some 

limitations in our data, we find that the probability of conversion does depend on technical 

efficiency preceding conversion but that the direction of the effect depends on farm size. More 

efficient farmers have a lower probability to convert if they operate small farms while they have a 

higher probability to convert if they operate large farms. The threshold that defines the sign of the 

elasticity of the probability of conversion to the average TE score has been estimated between 61 

ha and 109 ha depending on the model. In our sample, the average size of farms engaged in field 

crops is higher than the threshold, while the average size of farms engaged in grape, fruits, 

vegetables or flower production is lower than the threshold. This finding is found to be robust to 

the method of calculation and definition of TE scores, either parametric (SF) or non-parametric 

(bias-corrected DEA or FDH). This study also confirms that farmer’s and farm’s characteristics 

(education, farm size, indebtedness) and farmers’ practices under the CT (as measured by the 

share of agri-environmental subsidies in total su

impossibility to analyze partial conversions were the main limitations of our analysis. With a 

higher number of observations, we could have tested for heterogeneous responses across different 

types of farming or geographical areas.  

Our results thus indicate that there may be an (adverse) selection effect, that is less efficient 

farmers being attracted by OF, in particular among the group of ‘small’ farms in France. This is 

not a surprising finding given that small farms may suffer from financial problems due to their 

size (diseconomies of scale, difficulties to sell their small output to downward industries, credit 

constraints) which force them to consider production alternatives. One of them is OF, which 

enables small farms to produce high-value commodities, to obtain higher prices, to sell in short 

circuits, and thus to increase their profit. Hence, small inefficient farms are more likely to 

consider conversion to OF. However, with our results we cannot ascertain that such farms adopt 
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OT in the main objective of receiving additional subsidies, nor that the selection effect is 

prompted by the subsidy program. Our findings would have to be confirmed with more recent 

data for two reasons. Firstly, the support scheme to OF has changed in 2008 with the introduction 

of payments to remain in OF, once the conversion period has ended. Thus, farmers adopting OT 

may now receive compensatory payments during and after the conversion. This may lower the 

rate of OF abandonment but may trigger the conversion of inefficient farmers who, under the 

conversion-subsidy only scheme, did not want to engage in the heavy conversion process fearing 

that they may not be able to remain in OF afterwards in the absence of subsidies at the end of the 

conversion. Secondly, the requirements under OF have changed in 2009 in France. The European 

Commission issued the first regulation governing OF standards EU-wide which applied in all 

member states from 1 January 2009 onwards. While on a competition point of view such 

regulation was welcome by French farmers who felt that they could not compete with imports of 

organic products from countries with less strict production rules, on a technical point of view the 

ient farms may provide services to 

the society other than the production of food and fiber. The protection of environment is one of 

such services, whose provision is supposed to be realized by organic farms. In addition, higher 

labor employment on organic farms than on conventional farms may contribute to the socio-

economic health of rural areas, in particular the remote ones.  

regulation largely lowers the national requirements that were in place in France. Hence, French 

farmers willing to convert to OF may find it easier now that the requirements are less tight, which 

may induce the conversion of less efficient farmers. Investigating the role of TE and organic 

payments on farmers’ decision to convert is therefore necessary on more recent data. 

On a policy point of view, such issue is crucial. Indeed, public authorities in industrialized 

countries have always been interested in the drivers of structural change and in whether the 

agricultural sector’s competitiveness is constrained by the survival of inefficient farms. In 

general, it is recognized that public support programs to agriculture enable inefficient farms to 

remain in the sector by covering their losses. However, ineffic



Working Paper SMART – LERECO N°10-17 

 

 30

Appendices 

 

Table A1: Description of the explanatory variables used in the OF adoption model 

Variable name Measurement 
unit 

Description Source 

UAA  ha Farm’s UAA FADN 1999 to 2007 
    
EDUC Categorical  

variable 
Farmer’s education level  
1. No or primary education 
2. Low secondary education 
3. High secondary education 

FADN 1999 to 2007 

    
STATUS Categorical  

variable 
Farm’s legal status 
1. Sole proprietorship 
2. Partnership 
3. Companies 

FADN 1999 to 2007 

    
SH_ENVSUBS % Farm’s share of agri-

environmental subsidies in 
total operating subsidies 

FADN 1999 to 2007 

    
DEBTTOASSET ratio Farm’s debt to asset ratio FADN 1999 to 2007 
    
FERT_SGM ratio Farm’s fertilizers 

expenditure to standard 
gross margin 

FADN 1999 to 2007 

    
SUBTOOUT ratio Farm’s total operating 

subsidies to total output 
FADN 1999 to 2007 

    
POTDIFPRICE euro Potential difference in prices 

between organic and 
conventional products, for 
the farm if converting 

Authors’ own 
calculation based on 
FADN 1999-2007  

    
POTCONVSUBS euro/ha Potential yearly conversion 

subsidies, for the farm if 
converting next year 

Authors’ own 
calculation based on 
FADN 1999-2007 
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Table A2. Descriptive statistics of the explanatory variables in the probit models (averages 

for the 2003-2007 period) 

  Farmers with future 
OT 

Farmers remaining with CT

  
Number of farmers 43 3,718 
   
DEA-based TE score 0.60 0.65 
FDH-based TE score 0.83 0.86 
SF-based TE score 0.75 0.78 
UAA 62.27 87.62 
EDUC = 1  0.23 0.36 
EDUC = 2 0.42 0.48 
EDUC = 3 0.35 0.15 
STATUS = 1  0.51 0.56 
STATUS = 2 0.37 0.37 
STATUS = 3 0.12 0.06 
SH_ENVSUBS 13.91 3.02 
DEBTTOASSET 0.99 5.31 
FERT_SGM 0.09 0.12 
SUBTOOUT 0.14 0.18 
POTDIFPRICE -14.38 -9.97 
POTCONVSUBS 381.10 345.53 

Note: Definition of explanatory variables in Appendix A1. 
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Table A3. Probability to convert to OF (estimation results on a choice-based sample) 

Probability of 
conversion to OF in the 
next year 

Model with DEA-based 
TE score 

Model with FDH-
based TE score 

Model with SF-
based 
TE score 

 Coef. P>z Coef. P>z Coef. P>z 
       
TE score 
(past four-year average) -1.231 0.114 -1.278 0.092 -2.187 0.046 
UAA -0.008 0.181 -0.014 0.216 -0.022 0.081 
EDUC = 1 (ref.) - - - - - - 
EDUC = 2 -0.014 0.939 -0.021 0.908 -0.049 0.785 
EDUC = 3 0.562 0.014 0.565 0.014 0.500 0.025 
STATUS = 1 (ref.) - - - - - - 
STATUS = 2 -0.197 0.286 -0.165 0.365 -0.159 0.389 
STATUS = 3 0.038 0.886 0.075 0.774 0.067 0.805 
SH_ENVSUBS 0.013 0.011 0.013 0.012 0.013 0.009 
DEBTTOASSET -0.136 0.090 -0.137 0.085 -0.120 0.129 
FERT_SGM -1.587 0.170 -1.598 0.164 -1.148 0.331 
SUBTOOUT -0.359 0.591 -0.415 0.545 -0.723 0.350 
POTDIFPRICE 0.007 0.057 0.007 0.056 0.006 0.073 
POTCONVSUBS 0.000 0.948 0.000 0.832 0.000 0.960 
TE × UAA 0.012 0.174 0.016 0.197 0.026 0.079 
Year 2003 (0/1) 0.173 0.500 0.209 0.411 0.218 0.381 
Year 2004 (0/1) 0.440 0.040 0.464 0.029 0.497 0.024 
Year 2005 (0/1) 0.384 0.142 0.414 0.103 0.442 0.069 
Year 2006 (0/1) -0.009 0.970 0.010 0.967 -0.010 0.968 
Constant -1.386 0.048 -1.154 0.157 -0.497 0.610 
       
N 238  238  238  
Pseudo R2 0.1057  0.1079  0.1107  
Log-pseudolikelihood -13.30  -13.27  -13.23  

Note: in bold, significant effects. Definition of explanatory variables in Table A1. 
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